

S-5731 Series

HIGH-WITHSTAND VOLTAGE HIGH-SPEED UNIPOLAR DETECTION TYPE HALL EFFECT SWITCH IC

www.sii-ic.com

© SII Semiconductor Corporation, 2014-2017

Rev.1.1_00

This IC, developed by CMOS technology, is a unipolar detection type Hall effect switch IC with high-withstand voltage, high-speed detection and high-accuracy magnetic characteristics.

The output voltage changes when this IC detects the intensity level of magnetic flux density. Using this IC with a magnet makes it possible to detect the open / close and rotation status in various devices.

This IC includes an output current limit circuit.

High-density mounting is possible by using the small SOT-23-3 package.

Due to its high-accuracy magnetic characteristics, this IC can make operation's dispersion in the system combined with magnet smaller.

SII Semiconductor Corporation offers a "magnetic simulation service" that provides the ideal combination of magnets and our Hall effect ICs for customer systems. Our magnetic simulation service will reduce prototype production, development period and development costs. In addition, it will contribute to optimization of parts to realize high cost performance.

For more information regarding our magnetic simulation service, contact our sales office.

■ Features

• Pole detection*1: Detection of S pole, detection of N pole

Output logic*1: Active "L", active "H"
 Output form*1: Nch open-drain output,

Nch driver + built-in pull-up resistor

• Magnetic sensitivity*1: $B_{OP} = 3.0 \text{ mT typ.},$ $B_{OP} = 6.0 \text{ mT typ.}$ • Chopping frequency: $f_C = 250 \text{ kHz typ.}$

• Output delay time: t_D = 16.0 μ s typ. • Power supply voltage range: V_{DD} = 3.5 V to 26.0 V

• Built-in regulator

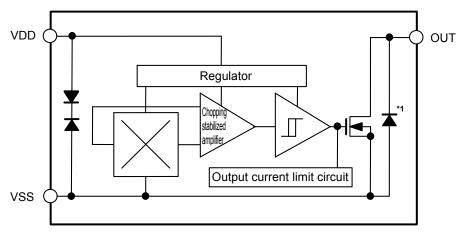
Built-in output current limit circuit

• Operation temperature range: Ta = -40° C to $+85^{\circ}$ C

• Lead-free (Sn 100%), halogen-free

Applications

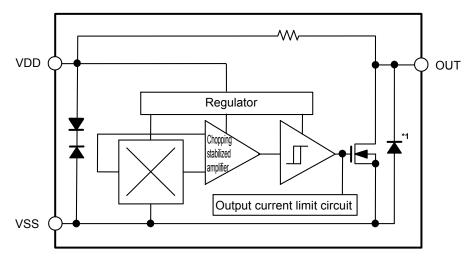
- Home appliance
- DC brushless motor
- Housing equipment
- · Industrial equipment


■ Package

• SOT-23-3

^{*1.} The option can be selected.

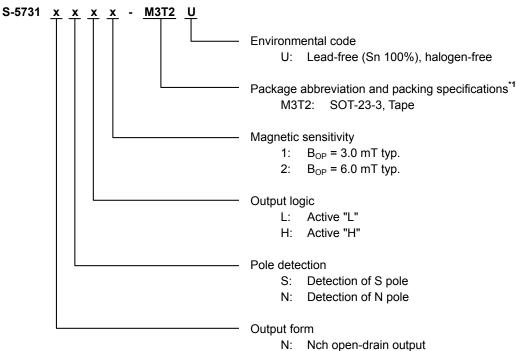
■ Block Diagrams


1. Nch open-drain output product

*1. Parasitic diode

Figure 1

2. Nch driver + built-in pull-up resistor product



*1. Parasitic diode

Figure 2

■ Product Name Structure

1. Product name

R: Nch driver + built-in pull-up resistor

2. Package

Table 1 Package Drawing Codes

Package Name	Dimension	Tape	Reel	
SOT-23-3	MP003-C-P-SD	MP003-C-C-SD	MP003-Z-R-SD	

3. Product name list

Table 2

Product Name	Output Form	Pole Detection	Output Logic	Magnetic Sensitivity (B _{OP})
S-5731NSL1-M3T2U	Nch open-drain output	S pole	Active "L"	3.0 mT typ.
S-5731NSL2-M3T2U	Nch open-drain output	S pole	Active "L"	6.0 mT typ.
S-5731NNL2-M3T2U	Nch open-drain output	N pole	Active "L"	6.0 mT typ.
S-5731RSL1-M3T2U	Nch driver + built-in pull-up resistor	S pole	Active "L"	3.0 mT typ.

Remark Please contact our sales office for products other than the above.

^{*1.} Refer to the tape drawing.

■ Pin Configuration

1. SOT-23-3

Top view

Pin No. Symbol Description

1 VSS GND pin

2 VDD Power supply pin

3 OUT Output pin

Table 3

Figure 3

■ Absolute Maximum Ratings

Table 4

(Ta = +25°C unless otherwise specified)

	Item	Symbol	Absolute Maximum Rating	Unit
Power supply voltage		V_{DD}	$V_{SS} - 0.3$ to $V_{SS} + 28.0$	V
Output current		I _{OUT}	20	mA
Output valtage	Nch open-drain output product		V_{SS} – 0.3 to V_{SS} + 28.0	V
Output voltage	Nch driver + built-in pull-up resistor product	V _{OUT}	$V_{SS} - 0.3 \text{ to } V_{DD} + 0.3$	V
Operation ambient temperature		T _{opr}	−40 to +85	°C
Storage temperature		T _{stg}	-40 to +125	°C

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

■ Thermal Resistance Value

Table 5

Item	Symbol	Condition		Min.	Тур.	Max.	Unit
			Board A	_	200	1	°C/W
	θ_{ja}	SOT-23-3	Board B	_	165	1	°C/W
Junction-to-ambient thermal resistance*1			Board C	_	1	I	°C/W
			Board D	_	ı	I	°C/W
			Board E	_	-	ı	°C/W

^{*1.} Test environment: compliance with JEDEC STANDARD JESD51-2A

Remark Refer to "■ Power Dissipation" and "Test Board" for details.

■ Electrical Characteristics

Table 6

(Ta = +25°C, V_{DD} = 12.0 V, V_{SS} = 0 V unless otherwise specified)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Power supply voltage	V_{DD}	_	3.5	12.0	26.0	V	_
Current concumption	_	Nch open-drain output product Average value	_	3.0	4.0	mA	1
Current consumption	I _{DD}	Nch driver + built-in pull-up resistor product Average value, V _{OUT} = "H"	_	3.0	4.0	mA	1
Output valtage	V	Nch open-drain output product Output transistor Nch, V _{OUT} = "L", I _{OUT} = 10 mA	-	-	0.4	V	2
Output voltage	V _{OUT}	Nch driver + built-in pull-up resistor product Output transistor Nch, V _{OUT} = "L", I _{OUT} = 10 mA	-	-	0.5	V	2
Output drop voltage	V _D	Nch driver + built-in pull-up resistor product V_{OUT} = "H", V_{D} = V_{DD} - V_{OUT}	_	_	20	mV	2
Leakage current	I _{LEAK}	Nch open-drain output product Output transistor Nch, V _{OUT} = "H" = 26.0 V	-	_	10	μΑ	3
Output limit current	I _{OM}	V _{OUT} = 12.0 V	22	_	70	mA	3
Output delay time	t _D	_	_	16.0	_	μs	_
Chopping frequency	f_C	-	_	250	_	kHz	_
Start up time	t_{PON}	_	_	30	_	μs	4
Output sing time		Nch open-drain output product $C = 20 \text{ pF}, R = 820 \Omega$		-	2.0	μs	5
Output rise time	t _R	Nch driver + built-in pull-up resistor product C = 20 pF	_	_	6.0	μs	5
Output fall time	t _F	C = 20 pF, R = 820 Ω	_	_	2.0	μs	5
Pull-up resistor	R_L	Nch driver + built-in pull-up resistor product	7	10	13	kΩ	_

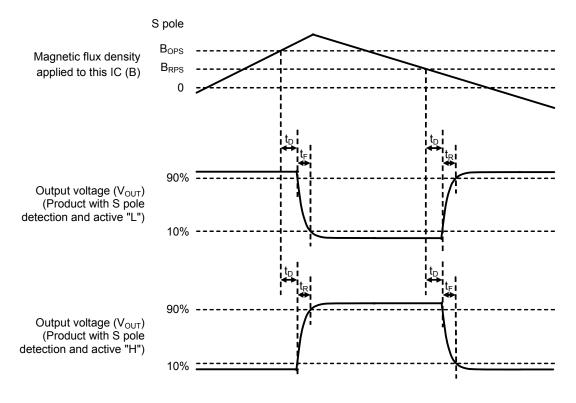


Figure 4 Operation Timing

■ Magnetic Characteristics

1. Product with S pole detection

1. 1 Product with $B_{OP} = 3.0 \text{ mT typ.}$

Table 7

(Ta = +25°C, V_{DD} = 12.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	B _{OPS}	_	1.5	3.0	4.5	mT	4
Release point*2	S pole	B _{RPS}	_	1.0	2.0	3.3	mT	4
Hysteresis width*3	S pole	B _{HYSS}	$B_{HYSS} = B_{OPS} - B_{RPS}$	1	1.0	1	mT	4

1. 2 Product with $B_{OP} = 6.0 \text{ mT typ.}$

Table 8

(Ta = +25°C, V_{DD} = 12.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	B _{OPS}	_	3.0	6.0	9.0	mT	4
Release point*2	S pole	B _{RPS}	_	2.5	4.5	7.5	mT	4
Hysteresis width*3	S pole	B _{HYSS}	$B_{HYSS} = B_{OPS} - B_{RPS}$	i	1.5	ı	mT	4

2. Product with N pole detection

2. 1 Product with $B_{OP} = 6.0 \text{ mT typ.}$

Table 9

(Ta = +25°C, V_{DD} = 12.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	N pole	B _{OPN}	_	-9.0	-6.0	-3.0	mT	4
Release point*2	N pole	B _{RPN}	_	-7.5	-4.5	-2.5	mT	4
Hysteresis width*3	N pole	B _{HYSN}	$B_{HYSN} = B_{OPN} - B_{RPN} $	ı	1.5	-	mT	4

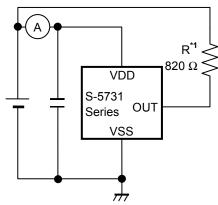
^{*1.} B_{OPN}, B_{OPS}: Operation points

 B_{OPN} and B_{OPS} are the values of magnetic flux density when the output voltage (V_{OUT}) changes after the magnetic flux density applied to this IC by the magnet (N pole or S pole) is increased (by moving the magnet closer).

Even when the magnetic flux density exceeds B_{OPN} or B_{OPS}, V_{OUT} retains the status.

***2.** B_{RPN}, B_{RPS}: Release points

 B_{RPN} and B_{RPS} are the values of magnetic flux density when the output voltage (V_{OUT}) changes after the magnetic flux density applied to this IC by the magnet (N pole or S pole) is decreased (the magnet is moved further away).


Even when the magnetic flux density falls below B_{RPN} or B_{RPS} , V_{OUT} retains the status.

*3. B_{HYSN}, B_{HYSS}: Hysteresis widths

 B_{HYSN} and B_{HYSS} are the difference between B_{OPN} and B_{RPN} , and B_{OPS} and B_{RPS} , respectively.

Remark The unit of magnetic density mT can be converted by using the formula 1 mT = 10 Gauss.

■ Test Circuits

*1. Resistor (R) is unnecessary for Nch driver + built-in pull-up resistor product.

Figure 5 Test Circuit 1

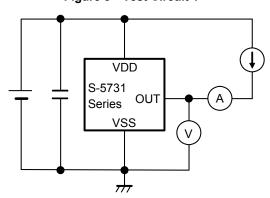


Figure 6 Test Circuit 2

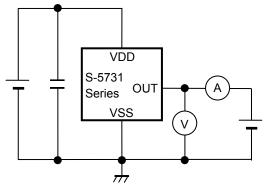
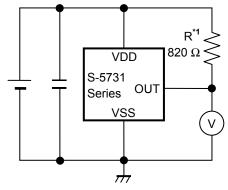
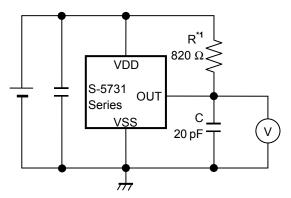
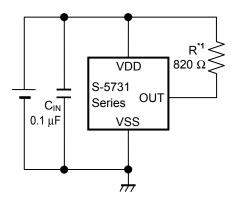




Figure 7 Test Circuit 3

*1. Resistor (R) is unnecessary for Nch driver + built-in pull-up resistor product.


Figure 8 Test Circuit 4

*1. Resistor (R) is unnecessary for Nch driver + built-in pull-up resistor product.

Figure 9 Test Circuit 5

■ Standard Circuit

*1. Resistor (R) is unnecessary for Nch driver + built-in pull-up resistor product.

Figure 10

Caution The above connection diagram and constant will not guarantee successful operation. Perform thorough evaluation using the actual application to set the constant.

■ Operation

1. Direction of applied magnetic flux

This IC detects the magnetic flux density which is vertical to the marking surface.

Figure 11 shows the direction in which magnetic flux is being applied.

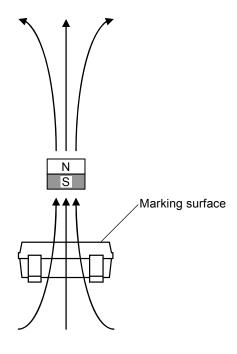


Figure 11

2. Position of Hall sensor

Figure 12 shows the position of Hall sensor.

The center of this Hall sensor is located in the area indicated by a circle, which is in the center of a package as described below.

The following also shows the distance (typ. value) between the marking surface and the chip surface of a package.

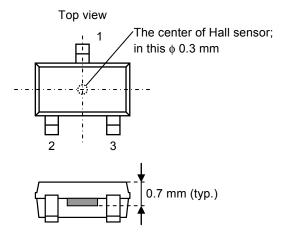


Figure 12

3. Basic operation

This IC changes the output voltage (V_{OUT}) according to the level of the magnetic flux density (N pole or S pole) applied by a magnet.

The following explains the operation when the output logic is active "L".

3. 1 Product with S pole detection

When the magnetic flux density of the S pole perpendicular to the marking surface exceeds the operation point (B_{OPS}) after the S pole of a magnet is moved closer to the marking surface of this IC, V_{OUT} changes from "H" to "L". When the S pole of a magnet is moved further away from the marking surface of this IC and the magnetic flux density is lower than the release point (B_{RPS}), V_{OUT} changes from "L" to "H".

Figure 13 shows the relationship between the magnetic flux density and V_{OUT}.

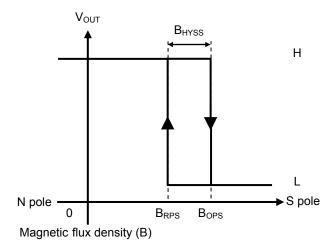


Figure 13

3. 2 Product with N pole detection

When the magnetic flux density of the N pole perpendicular to the marking surface exceeds the operation point (B_{OPN}) after the N pole of a magnet is moved closer to the marking surface of this IC, V_{OUT} changes from "H" to "L". When the N pole of a magnet is moved further away from the marking surface of this IC and the magnetic flux density of the N pole is lower than the release point (B_{RPN}) , V_{OUT} changes from "L" to "H".

Figure 14 shows the relationship between the magnetic flux density and V_{OUT} .

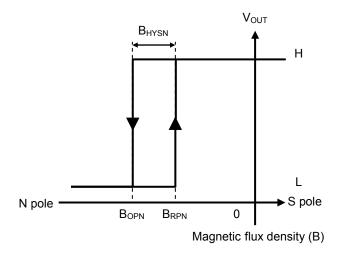
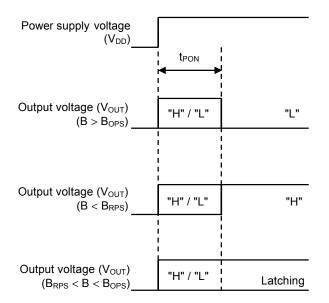


Figure 14

4. Timing chart

Figure 15 shows the operation timing at power-on.


The initial output voltage at rising of power supply voltage (V_{DD}) is either "H" or "L".

In case of B > B_{OPS} (operation point) or B < B_{RPS} (release point) at the time when the start up time (t_{PON}) is passed after rising of V_{DD} , this IC outputs V_{OUT} according to the applied magnetic flux density.

In case of $B_{\text{RPS}} < B < B_{\text{OPS}}$ at the time when t_{PON} is passed after rising of V_{DD} , this IC maintains the initial output voltage.

Product with S pole detection and active "L"

Product with S pole detection and active "H"

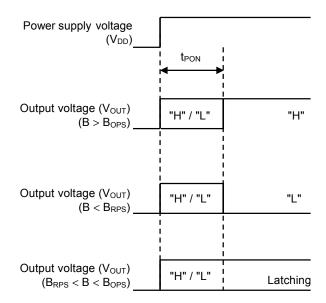
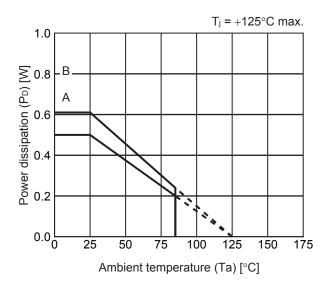


Figure 15


HIGH-WITHSTAND VOLTAGE HIGH-SPEED UNIPOLAR DETECTION TYPE HALL EFFECT SWITCH IC S-5731 Series Rev.1.1_00

■ Precautions

- If the impedance of the power supply is high, the IC may malfunction due to a supply voltage drop caused by feed-through current. Take care with the pattern wiring to ensure that the impedance of the power supply is low.
- Note that the IC may malfunction if the power supply voltage rapidly changes. When the IC is used under the
 environment where the power supply voltage rapidly changes, it is recommended to judge the output voltage of the IC
 by reading it multiple times.
- Note that the output voltage may rarely change if the magnetic flux density between the operation point and the release point is applied to this IC continuously for a long time.
- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.
- Although this IC has a built-in output current limit circuit, it may suffer physical damage such as product deterioration under the environment where the absolute maximum ratings are exceeded.
- The application conditions for the power supply voltage, the pull-up voltage, and the pull-up resistor should not exceed the power dissipation.
- Large stress on this IC may affect on the magnetic characteristics. Avoid large stress which is caused by the handling during or after mounting the IC on a board.
- SII Semiconductor Corporation claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.

■ Power Dissipation

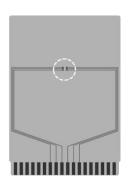
SOT-23-3

 Board
 Power Dissipation (P_D)

 A
 0.50 W

 B
 0.61 W

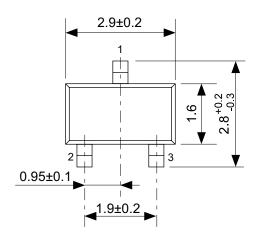
 C

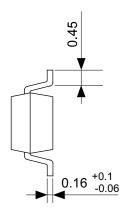

 D

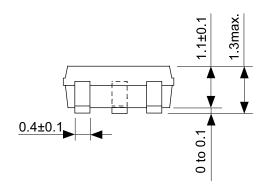
 E

SOT-23-3/5/6 Test Board

(1) Board A

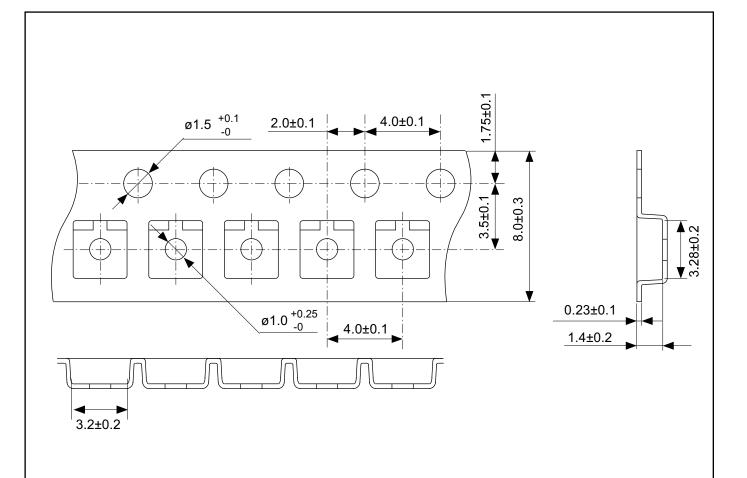

Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		2
	1	Land pattern and wiring for testing: t0.070
Coppor foil lover [mm]	2	-
Copper foil layer [mm]	3	-
	4	74.2 x 74.2 x t0.070
Thermal via		-

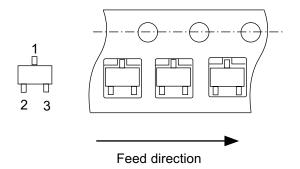

(2) Board B



Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		4
	1	Land pattern and wiring for testing: t0.070
Copper foil layer [mm]	2	74.2 x 74.2 x t0.035
Copper foli layer [min]	3	74.2 x 74.2 x t0.035
	4	74.2 x 74.2 x t0.070
Thermal via		-

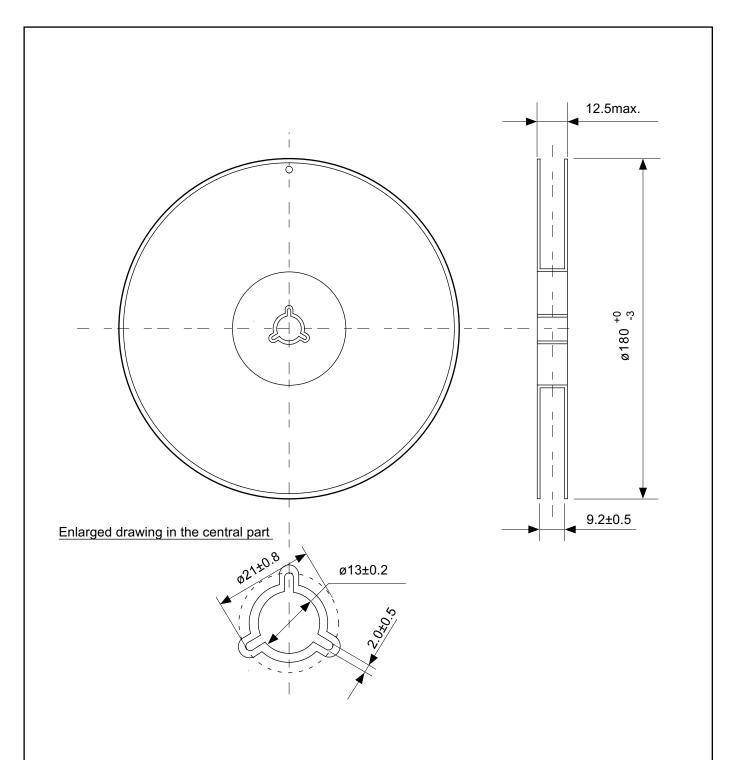
No. SOT23x-A-Board-SD-1.0





No. MP003-C-P-SD-1.1

TITLE	SOT233-C-PKG Dimensions
No.	MP003-C-P-SD-1.1
ANGLE	\$
UNIT	mm
CII C	l omiconductor Corneration


SII Semiconductor Corporation

No. MP003-C-C-SD-2.0

TITLE	SOT233-C-Carrier Tape			
No.	MP003-C-C-SD-2.0			
ANGLE				
UNIT	mm			
SII Semiconductor Corporation				

No. MP003-Z-R-SD-1.0

TITLE	SOT233-C-Reel		
No.	MP003-Z-R-SD-1.0		
ANGLE		QTY.	3,000
UNIT	mm		
SII Semiconductor Corporation			

Disclaimers (Handling Precautions)

- 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.
- 2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design.
 - SII Semiconductor Corporation is not responsible for damages caused by the reasons other than the products or infringement of third-party intellectual property rights and any other rights due to the use of the information described herein.
- 3. SII Semiconductor Corporation is not responsible for damages caused by the incorrect information described herein.
- 4. Take care to use the products described herein within their specified ranges. Pay special attention to the absolute maximum ratings, operation voltage range and electrical characteristics, etc.
 - SII Semiconductor Corporation is not responsible for damages caused by failures and/or accidents, etc. that occur due to the use of products outside their specified ranges.
- 5. When using the products described herein, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use.
- 6. When exporting the products described herein, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures.
- 7. The products described herein must not be used or provided (exported) for the purposes of the development of weapons of mass destruction or military use. SII Semiconductor Corporation is not responsible for any provision (export) to those whose purpose is to develop, manufacture, use or store nuclear, biological or chemical weapons, missiles, or other military use.
- 8. The products described herein are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses. Do not use those products without the prior written permission of SII Semiconductor Corporation. Especially, the products described herein cannot be used for life support devices, devices implanted in the human body and devices that directly affect human life, etc.
 - Prior consultation with our sales office is required when considering the above uses.
 - SII Semiconductor Corporation is not responsible for damages caused by unauthorized or unspecified use of our products.
- 9. Semiconductor products may fail or malfunction with some probability.
 - The user of these products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction.
 - The entire system must be sufficiently evaluated and applied on customer's own responsibility.
- 10. The products described herein are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use.
- 11. The products described herein do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Take care when handling these with the bare hands to prevent injuries, etc.
- 12. When disposing of the products described herein, comply with the laws and ordinances of the country or region where they are used.
- 13. The information described herein contains copyright information and know-how of SII Semiconductor Corporation. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to SII Semiconductor Corporation or a third party. Reproduction or copying of the information described herein for the purpose of disclosing it to a third-party without the express permission of SII Semiconductor Corporation is strictly prohibited.
- 14. For more details on the information described herein, contact our sales office.

1.0-2016.01

