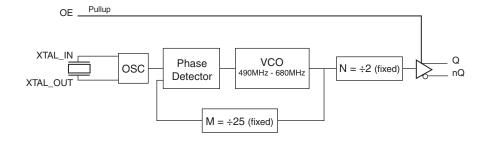
PRODUCT DISCONTINUATION NOTICE - LAST TIME BUY EXPIRES MAY 6, 2017

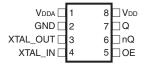
DATA SHEET

GENERAL DESCRIPTION

The 844031-01 is an Ethernet Clock Generator. The 844031-01 uses an 18pF parallel resonant crystal over the range of 19.6MHz - 27.2MHz. For Ethernet applications, a 25MHz crystal is used to generate 312.5MHz. The 844031-01 has excellent <1ps phase jitter performance, over the 1.875MHz - 20MHz integration range. The 844031-01 is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.


FEATURES

- · One differential LVDS output
- Crystal oscillator interface, 18pF parallel resonant crystal (19.6MHz - 27.2MHz)
- Output frequency range: 245MHz 340MHz
- VCO range: 490MHz 680MHz
- RMS phase jitter @ 312.5MHz, using a 25MHz crystal (1.875MHz - 20MHz): 0.53ps (typical)
- 3.3V or 2.5V operating supply
- 0°C to 70°C ambient operating temperature
- Available in lead-free (RoHS 6) package
- For functional replacement part use 8T49N242


COMMON CONFIGURATION TABLE

	Output Frequency			
Crystal Frequency (MHz) M		N	Multiplication Value M/N	(MHz)
25	25	2	12.5	312.5

BLOCK DIAGRAM

PIN ASSIGNMENT

844031-01

8-Lead TSSOP 4.40mm x 3.0mm x 0.925mm package body G Package Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Ту	ре	Description
1	V _{DDA}	Power		Analog supply pin.
2	GND	Power		Power supply ground.
3, 4	XTAL_OUT, XTAL_IN	Input		Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.
5	OE	Input	Pullup	Output enable pin. When HIGH, Q/nQ output is active. When LOW, the Q/nQ output is in a high impedance state. LVCMOS/LVTTL interface levels.
6, 7	nQ, Q	Output		Differential clock outputs. LVDS interface levels.
8	V	Power		Core supply pin.

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C	Input Capacitance			4		pF
R	Input Pullup Resistor			51		kΩ

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD} 4.6V

Inputs, V_{DD} + 0.5 V

Outputs, I_o (LVDS)

Continuous Current 10mA
Surge Current 15mA

Package Thermal Impedance, θ₁₀ 129.5°C/W (0 mps)

Storage Temperature, T_{stg} -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 3A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, Ta = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		V _{DD} - 0.10	3.3	V	V
I _{DD}	Power Supply Current				75	mA
I _{DDA}	Analog Supply Current				10	mA

Table 3B. Power Supply DC Characteristics, $V_{_{DD}}$ = 2.5V±5%, Ta = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V _{DDA}	Analog Supply Voltage		V _{DD} - 0.10	2.5	V _{DD}	V
I _{DD}	Power Supply Current				70	mA
I _{DDA}	Analog Supply Current				10	mA

Table 3C. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $TA = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V	Input High Voltage		$V_{_{DD}} = 3.3V$	2		V _{DD} + 0.3	V
V IH	Input riigh voltage		$V_{_{DD}} = 2.5V$	1.7		V _{DD} + 0.3	V
V	Input Low Voltage		$V_{_{DD}} = 3.3V$	-0.3		0.8	V
V _{IL}	Imput Low voltage		$V_{_{DD}} = 2.5V$	-0.3		0.7	V
I _{IH}	Input High Current	OE	$V_{DD} = V_{IN} = 3.465 \text{V or } 2.625 \text{V}$			5	μΑ
I	Input Low Current	OE	$V_{_{DD}} = 3.465V \text{ or } 2.625V, V_{_{IN}} = 0V$	-150			μΑ

Table 3D. LVDS DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, Ta = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{od}	Differential Output Voltage		275		425	mV
Δ V $_{_{ m OD}}$	V _{op} Magnitude Change				50	mV
Vos	Offset Voltage		1.15	1.33	1.45	V
ΔV_{os}	V _{os} Magnitude Change				50	mV

NOTE: Please refer to Parameter Measurement Information for output information.

Table 3E. LVDS DC Characteristics, $V_{_{DD}} = 2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{od}	Differential Output Voltage		215		430	mV
$\Delta V_{_{\mathrm{OD}}}$	V _{op} Magnitude Change				50	mV
Vos	Offset Voltage		1.05	1.26	1.45	V
ΔV_{os}	V _{os} Magnitude Change				50	mV

NOTE: Please refer to Parameter Measurement Information for output information.

TABLE 4. CRYSTAL CHARACTERISTICS

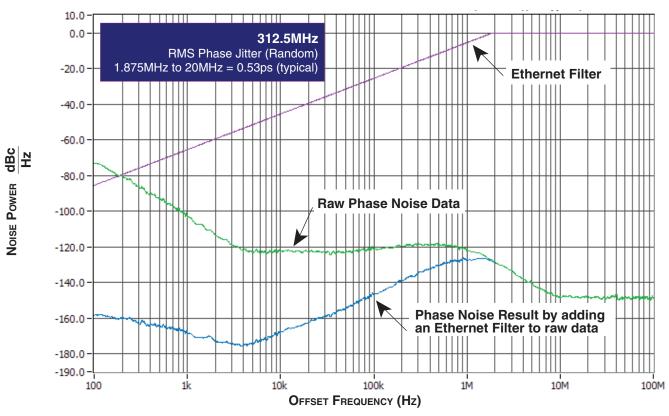
Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		F	undamental		
Frequency		19.6		27.2	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF

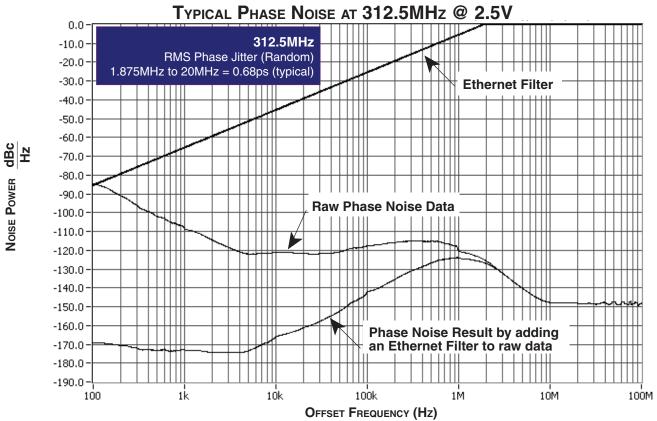
NOTE: It is not recommended to overdrive the crystal input with an external clock.

Table 5A. AC Characteristics, $V_{_{DD}} = 3.3V \pm 5\%$, Ta = 0°C to 70°C

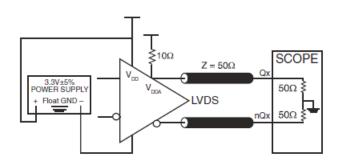
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{out}	Output Frequency		245		340	MHz
tjit(Ø)	RMS Phase Jitter (Random); NOTE 1	312.5MHz @ Integration Range: 1.875MHz - 20MHz		0.53		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	200		400	ps
odc	Output Duty Cycle		48		52	%

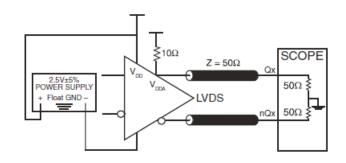
NOTE 1: Please refer to the Phase Noise Plots following this section.

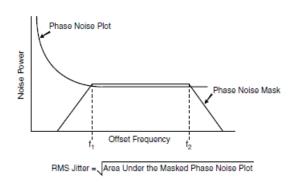

Table 5B. AC Characteristics, $V_{DD} = 2.5V \pm 5\%$, Ta = 0°C to 70°C

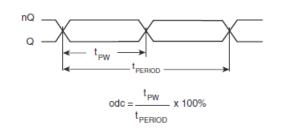

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{out}	Output Frequency		245		340	MHz
tjit(Ø)	RMS Phase Jitter (Random); NOTE 1	312.5MHz @ Integration Range: 1.875MHz - 20MHz		0.68		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	200		400	ps
odc	Output Duty Cycle		48		52	%

NOTE 1: Please refer to the Phase Noise Plots following this section.

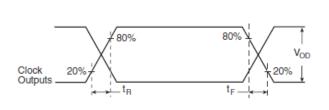

Typical Phase Noise at 312.5MHz @ 3.3V

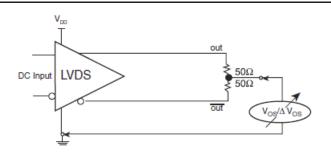



PARAMETER MEASUREMENT INFORMATION

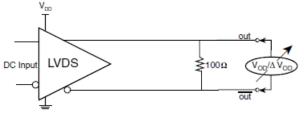


LVDS 3.3V OUTPUT LOAD AC TEST CIRCUIT


LVDS 2.5V OUTPUT LOAD AC TEST CIRCUIT



RMS PHASE JITTER


OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

OUTPUT RISE/FALL TIME

OFFSET VOLTAGE SETUP

APPLICATION INFORMATION

Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 844031-01 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $V_{\tiny DD}$ and $V_{\tiny DDA}$ should be individually connected to the power supply plane through vias, and 0.01µF bypass capacitors should be used for each pin. Figure 1 illustrates this for a generic V pin and also shows that V $_{\tiny DDA}$ requires that an additional 10Ω resistor along with a $10\mu\text{F}$ bypass capacitor be connected to the V pin.

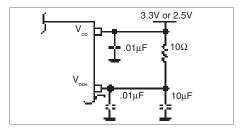


FIGURE 1. POWER SUPPLY FILTERING

CRYSTAL INPUT INTERFACE

The 844031-01 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 25MHz, 18pF parallel

resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

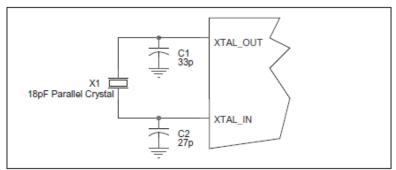


FIGURE 2. CRYSTAL INPUT INTERFACE

3.3V, 2.5V LVDS DRIVER TERMINATION

A general LVDS interface is shown in Figure 4 In a 100 Ω differential transmission line environment, LVDS drivers require a matched load termination of 100 Ω across near

the receiver input. For a multiple LVDS outputs buffer, if only partial outputs are used, it is recommended to terminate the unused outputs.

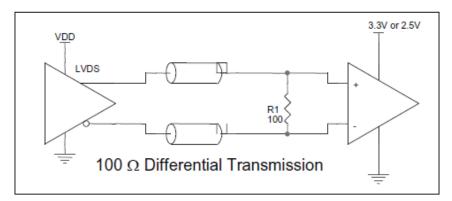



FIGURE 4. TYPICAL LVDS DRIVER TERMINATION

APPLICATION SCHEMATIC

Figure 5A provides a schematic example of 844031-01. In this example, an 18 pF parallel resonant crystal is used. The C1=22pF and C2=22pF are recommended for frequency. The C1 and C2 values may be slightly adjusted for optimizing frequency

accuracy. At least one decoupling capacitor near the power pin is required. Suggested value range is from 0.01uF to 0.1uF. Other filter type can be added depending on the system power supply noise type.

PC BOARD LAYOUT EXAMPLE

Figure 5B shows an example of 844031-01 P.C. board layout. The crystal X1 footprint shown in this example allows installation of either surface mount HC49S or through-hole HC49 package. The footprints of other components in this example are listed in the *Table*

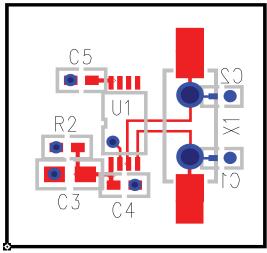


FIGURE 5B. 844031-01 PC BOARD LAYOUT EXAMPLE

6. There should be at least one decoupling capacitor per power pin. The decoupling capacitors should be located as close as possible to the power pins. The layout assumes that the board has clean analog power ground plane.

TABLE 6. FOOTPRINT TABLE

Reference	Size
C1, C2	0402
C3	
C4, C5	
R2	

NOTE: Table 6, lists component sizes shown in this layout example.

POWER CONSIDERATIONS

This section provides information on power dissipation and junction temperature for the 844031-01. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 844031-01 is the sum of the core power plus the analog power plus the power dissipated in the load(s). The following is the power dissipation for $V_{ss} = 3.3V + 5\% = 3.465V$, which gives worst case results.

• Power (core)_{MAX} = $V_{DD,MAX}$ * ($I_{DD,MAX}$ + $I_{DDA,MAX}$) = 3.465V * (75mA + 10mA) = **294.5mW**

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ must be used. Assuming no air flow and a multi-layer board, the appropriate value is 129.5°C/W per Table 7 below.

Therefore, Tj for an ambient temperature of 70° C with all outputs switching is: 70° C + 0.294W * 129.5°C/W = 108.1°C. This is well below the limit of 125°C.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

Table 7. Thermal Resistance θ_{JA} for 8-Lead TSSOP, Forced Convection

θ_{JA} by Velocity (Meters per Second) 0 1 2.5 Multi-Layer PCB, JEDEC Standard Test Boards 129.5°C/W 125.5°C/W 123.5°C/W

RELIABILITY INFORMATION

Table 8. $\theta_{_{JA}}$ vs. Air Flow Table for 8 Lead TSSOP

θ_{JA} by Velocity (Meters per Second)

 0
 1
 2.5

 Multi-Layer PCB, JEDEC Standard Test Boards
 129.5°C/W
 125.5°C/W
 123.5°C/W

TRANSISTOR COUNT

The transistor count for 844031-01 is: 2519

PACKAGE OUTLINE - G SUFFIX FOR 8 LEAD TSSOP

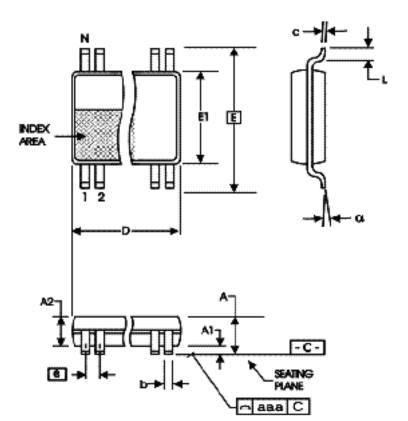


TABLE 9. PACKAGE DIMENSIONS

CVMDOL	Millimeters		
SYMBOL	Minimum	Maximum	
N	8		
А		1.20	
A1	0.05	0.15	
A2	0.80	1.05	
b	0.19	0.30	
С	0.09	0.20	
D	2.90	3.10	
E	6.40 BASIC		
E1	4.30	4.50	
е	0.65 BASIC		
L	0.45	0.75	
α	0°	8°	
aaa		0.10	

Reference Document: JEDEC Publication 95, MO-153

Table 10. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
ICS844031BG-01LF	1B01L	8 lead "Lead-Free" TSSOP	tube	0°C to 70°C
ICS844031BG-01LFT	1B01L	8 lead "Lead-Free" TSSOP	tape & reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

	REVISION HISTORY SHEET						
Rev	Table	Page	Description of Change	Date			
А	T4 T10	1 4 8 12	Deleted HiPerClockS references. Crystal Characteristics Table - added note. Deleted application note, LVCMOS to XTAL Interface. Deleted quantity from tape and reel.	9/23/12			
Α	T10	12	Ordering Information - removed leaded devices. Updated data sheet information.	10/28/15			
Α			Product Discontinuation Notice - Last time buy expires may 6, 2017. PDN CQ-16-01	6/2/16			

Corporate Headquarters

6024 Silver Creek Valley Road San Jose, California 95138 Sales

800-345-7015 or +408-284-8200 Fax: 408-284-2775 www.IDT.com Technical Support email: clocks@idt.com

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright 2016. All rights reserved.