
599 Menlo Drive, Suite 100
Rocklin, California 95765, USA
Office: (916) 624-8333
Fax: (916) 624-8003

General: info@parallax.com
Technical: support@parallax.com
Web Site: www.parallax.com
Educational: www.stampsinclass.com

Applying the Boe-Bot Digital Encoder Kit (#28107)
By Philip C. Pilgrim

Introduction

This paper details my experiences designing and applying a set of digital wheel encoders (available
from Parallax, Inc. as the “Boe-Bot Digital Encoder Kit”, catalog number 28107) for Parallax’s Boe-
Bot, a two-wheel-plus-stabilizer-ball robot. I undertook this project in order to help the Boe-Bot
navigate with some degree of precision without having to rely solely on external references such as a
compass or sonic ranging module. By incorporating optical encoders, one is able to tell how far each
wheel has turned and is, hopefully, able to coordinate the wheels’ respective movements to guide the
Boe-Bot to a desired destination. In addition, even without coordinated movement, and given any
sequence of encoder outputs (along with the directions of rotation), one should be able to tell where
the Boe-Bot is and in what direction it’s pointing. This is known as “wheel odometry”.

The Goal

The goal of this exercise was to come up with an encoder system for the Boe-Bot wheels that was
simple, easy to install, and didn’t rely on a separate co-processor to manage the encoder pulses or
servo pulses. This meant that the BASIC Stamp would not only have to send servo pulses to the
motors but also have to count and process the resulting encoder pulses – all the while using this
information to adjust and coordinate the servos on the fly. Simplicity dictated minimal modifications
to the robot’s hardware. Fortunately the new Boe-Bot wheels come equipped with eight evenly
spaced holes – enough for eight full pulses or sixteen pulse edges per revolution. This is a big enough
number to be useful, yet small enough not to overwhelm the BASIC Stamp with too high a pulse rate.
With a simple optical sensor, the wheels themselves could become ideal encoder disks. But first,
some math.

The Theory

Moving

Assume a robot with two opposing drive wheels, each of diameter d and distance w apart. Also
assume that as each wheel turns, an encoder outputs n equally-spaced pulses per revolution. Each of
these pulses will correspond to a distance of travel D equal to the wheel circumference divided by n,
or

D = ππππ d / n

where ππππ is the familiar 3.14159265… So for a typical Boe-Bot wheel of 2.61” (67.06 mm) diameter
and an encoder that puts out, say, 16 pulses per revolution, each pulse corresponds to 0.512” (13 mm)
of travel, as the following diagram illustrates:

2 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

0 1 2 3 4 5 6 7

0

1

2
3

4

5

Encoder Output

Direction of Motion

0.512"

Therefore, if both wheels were synchronized and turning in the same direction for 7 pulses (actually
pulse edges, but we’ll call them pulses for brevity), the Boe-Bot would have moved 3.6” (91 mm) in a
straight line. For the subsequent discussion, instead of inches and millimeters, we will use a new unit
of length, the ep, equal to the distance (0.512” or 13 mm) traversed over the span of one encoder
pulse (hence the name). If we had a way of monitoring and counting the encoder pulses as the Boe-
Bot moved forward, we could control the servo motors to guarantee a certain distance of travel.

Turning

By rotating the Boe-Bot’s wheels in opposing directions, it is possible to effect a change in
orientation. What does this mean in terms of encoder pulses? Starting with a Boe-Bot facing due
north, suppose the left wheel were to move forward by 16 encoder pulses while the right wheel
moved in reverse by 16. After pivoting on its center in this fashion, what direction will the bot then be
facing? A typical Boe-Bot has wheels about 4.16” (8.125 eps) apart (i.e. w = 8.125), from the center
of one tread to the center of the other. So when the Boe-Bot pivots on its center, the wheel contact
points will form a circle 8.125 eps in diameter. This circle will have a circumference

c = ππππ w

or, for the Boe-Bot, about 25.52 eps. But we already know that each wheel has moved 16 eps along
this circumference which, as a fraction of the full circumference is 16 / 25.52, or .627. This equates to
225.9 degrees or 160.6 brads (binary radians). So, for pivoting, we can write the formula for the angle
of turn θθθθ as

θθθθ (brads) = m (ππππ d / n) / (ππππ w) ∙ 256
= (md) / (nw) ∙ 256

where m is the number of encoder pulses in each direction. Substituting the Bot-Bot’s constants and a
16 pulse-per-revolution wheel encoder, we get θθθθ = 10.038 m, or 10.038 brads per encoder pulse. For
16 encoder pulses, for example, we would get a net rotation of about 160.5 brads.

Center pivoting is only one kind of turn, though. Consider the case where the left wheel goes forward
by 100 pulses, while the right wheel goes forward 132 pulses. Obviously, the Boe-Bot will veer to the
left, but by how much? Assuming the motions of the two wheels are coordinated, the bot will move in
an arc, as shown in the following diagram:

3 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

θ

r w

The inner track (arc) will have a length of 100 eps; the outer, 132 eps. Both of these tracks have a
common center, but what are their radii r, and what angle θθθθ do they cover? Well, we know their
difference in radius is w, the wheel separation, or 8.125 eps. Using the formula for arc length D = r θθθθ
(θθθθ here is in radians), we can write this relationship for both the inner and outer wheel, as follows:

Douter = (r + w) θθθθ = r θθθθ + w θθθθ
Dinner = r θθθθ

Subtracting the bottom formula from the top one:

Douter – Dinner = w θθθθ or
θθθθ = (Douter – Dinner) / w

Now this is interesting: r completely disappeared! What this tells us is that the turn angle is a function
only of the difference in length between the two wheel arcs (i.e. the difference in the number of
encoder pulses) and the separation of the wheels. Lets see what this computes out to for our example:

θθθθ = (132 – 100) / 8.125
 = 3.938 radians
 = 160.5 brads

How does this jibe with the pivoting case? In that case, the left wheel went back 16 pulses (i.e.
forward by negative 16), while the right wheel went forward 16. So the difference between these is 32
(16 minus negative 16), just as it is here. And the net rotations are the same!

Suppose now that we know the angle we want to turn and want to compute the pulse difference
necessary to obtain that angle. Since individual pulse counts don’t matter – only their difference –
let’s write that difference ∆∆∆∆D instead of Douter – Dinner. From the above formula, then:

θθθθ = ∆∆∆∆D / w, or

4 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

∆∆∆∆D = θθθθ w, where θθθθ is in radians, or
∆∆∆∆D = 2ππππ θθθθ w / 256, where θθθθ is in brads, or
∆∆∆∆D = 0.1994 θθθθ, given the dimensions of the Boe-Bot..

So, to turn any angle θθθθ, we just need to make sure that the difference in encoder pulses between
wheels is 0.1994 θθθθ. Right?

Well, not quite. And here is where we run into our first problem. It’s not even a practical one: it’s
theoretical. Suppose we wanted to turn 90 degrees (64 brads). That’s not an unreasonable thing to
want to do. So we apply the formula and come up with ∆∆∆∆D = 12.76. That’s about twelve and three-
quarters encoder pulses. But we can’t measure fractional encoder pulses: they only come in whole
integer amounts. So we will always have an angle error of up to ±0.5 pulses or close to ±2.5 brads.
(This is to say that one encoder pulse applied to one wheel will result in a turn of about 5 brads. This
is the smallest turn increment we can make.) That’s a lot or error – especially if we want to aim and
then travel some distance in a straight line to get to a certain point. The farther we go, the farther off
the mark we get.

What to do? One obvious solution is to have more than 16 pulses per revolution – maybe even 256.
Then we could count 204.16 encoder pulses for a 64-brad turn. Okay 204, with an error of 0.16 or
0.078%. That’s not so bad is it? Well, no. But even at a wheel speed of 0.5 rpm, that’s only about 8
ms per pulse. And that’s too fast a clip to meet the goal of BASIC-Stamp-only encoder processing.

So let’s examine the reasons for turning in the first place. A robot turns, mainly, to point it in the
direction it needs to go next. And, as long as it gets where it needs to go, a little initial angle error
probably shouldn’t matter. Consider the case shown below:

The Boe-Bot wants to get to the target P, distance D away. But it’s unable to aim directly for it due to
the coarseness of its encoders. If it followed the path it set out on, it would end up at Q. The angle
error (greatly exaggerated here for clarity) between the direction it wants to go and the direction angle
it can go is denoted as εεεε (epsilon). So what can it do? As the figure suggests, it can travel a shorter
distance a, then turn left by an angle δδδδ (delta), then proceed a distance b to P.

Now δδδδ is chosen ahead of time to be the smallest increment the Boe-Bot can turn (i.e. one encoder
pulse forward in the right wheel, in this case; the left wheel remaining still). The trick is to calculate a
and b. We assume that εεεε and δδδδ are small, so that sin εεεε ≈≈≈≈ εεεε, and sin δδδδ ≈≈≈≈ δδδδ. Also, under this assumption,
cos εεεε ≈≈≈≈ cos δδδδ ≈≈≈≈ 1, so a + b ≈≈≈≈ D. We also assume that εεεε < δδδδ. (We can assume this because if it were
not true, we could just turn by another increment δδδδ to further reduce εεεε. In fact, we can always make
sure that | ε ε ε ε | ≤≤≤≤ | δδδδ / 2 |. How? Well, again, if it were not true, we could turn past the direct path to P
to come up with a smaller εεεε below that path.) Given these assumptions, we see that

ε
D

D
δ

h abP

Q

δ−ε

5 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

h = b sin(δδδδ – εεεε) = a sin ε ε ε ε , so
b (δδδδ – εεεε) – a ε = 0 ε = 0 ε = 0 ε = 0 . And
b + a = D .

Solving the above simultaneously for a and b, we get

a = (δδδδ – εεεε) D / δδδδ , and
b = ε ε ε ε D / δδδδ .

The following table illustrates the effectiveness of this path correction method. In this example, we let
D equal 200 eps, and assume the value for δδδδ that we derived above (i.e. 5 brads). We also assume that
both a and b are integers, since that’s what got us into this mess to begin with! We chart the original
distance error | P – Q |, versus the distance error after the correction, both given in eps:

ε / δε / δε / δε / δ a b Original
Error

Corrected
Error

 0/16
 1/16
 2/16
 3/16
 4/16
 5/16
 6/16
 7/16
 8/16
 9/16
10/16
11/16
12/16
13/16
14/16
15/16

200
187
175
162
150
137
125
112
100
 87
 75
 62
 50
 37
 25
 12

 0
 13
 25
 38
 50
 63
 75
 88
100
113
125
138
150
163
175
188

 0.000
 1.540
 3.080
 4.620
 6.160
 7.700
 9.239
10.779
12.318
13.857
15.396
16.935
18.473
20.012
21.550
23.087

0.000
0.109
0.166
0.240
0.284
0.332
0.356
0.379
0.379
0.378
0.356
0.331
0.284
0.238
0.166
0.107

The improvement in the final position accuracy is obvious.

Coordinated Motion

Given a certain number of encoder pulses for each wheel to move, how then does one coordinate the
two wheels to achieve an accurate turn, straight-line travel, or arced path? Without encoders, one
would simply assign a velocity to each wheel in proportion to the distance it has to cover and run both
wheels together for the right amount of time to cover those distances. If this were, in reality, a
reasonable thing to do, we wouldn’t need encoders! So, given marginally predictable wheel velocities
and our encoder pulses, how do we enforce precision motion?

Let D(L) be the total distance we want the left wheel to move, and D(R) be the total distance for the
right wheel. The directions are unimportant. We just want to make sure that both motions start and
stop at the same time and proceed at constant rates. During the wheels’ movement, let’s keep track of
how many encoder pulses each wheel has left before it can stop. We’ll call these numbers C(L) and
C(R) for the left count and right count, respectively. At the beginning of movement we know that

6 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

C(L) = D(L), and C(R) = D(R). At then end we want C(L) = C(R) = 0. And during motion,
whenever we get a pulse from one of the wheels, we’ll decrement its count C by one.

The Boe-Bot’s wheels are (conveniently) driven by RC servos modified for continuous rotation. We
won’t belabor their operation here, since that’s covered in Andy Lindsay’s book, Robotics with the
Boe-Bot (Parallax stock number 28155). Suffice it to say that the servos are driven by discrete pulses
and that the speed of rotation is some function of the pulse width. As long as the servo is fed pulses, it
will continue to rotate. When the pulses stop, the servo will stop.

Through a procedure of calibration, it should therefore be possible to associate a certain desired
velocity with a corresponding pulse width, subject to external limitations such as loading, battery
reserve, and the like. As long as we provide a continuous train of such pulses to the servo, it will
continue to turn at or near the desired speed. But if we leave out a pulse here and there, the servo will
falter, and its net speed will decrease. So long as we don’t do this too often, its motion will still
appear smooth.

So here’s the plan:

1. Find pulse widths that correspond roughly to the wheel velocities we’re trying to achieve.

2. Drive each wheel with a continuous stream of such pulses, all the while monitoring the encoders.

3. If one a wheel gets proportionately ahead of the other one, leave out pulses to retard its motion
until the other wheel catches up.

4. Continue until both wheels expend their allotted encoder counts.

How will we know if one wheel is ahead of the other – particularly when their total amounts to turn
are different?

Consider the following scenario. One wheel has a total distance 1.5 times the other. The ideal encoder
pulse strings would look like the those in the illustration:

9 8 7 6 5 4 3 2 1 0

6 5 4 3 2 1 0

C(L) =
D(R) = 6

D(L) = 9
C(R) =

(Notice that we actually count pulses on each edge. That way, given a wheel with eight holes and
some sort of photodetector, we can get the 16 counts per revolution alluded to earlier.) At each
position along the pulse trains, observe the two products, C(L) ∙ D(R) and C(R) ∙ D(L). At the very
beginning, both products equal 54, When the first edge on L comes along, C(L) ∙ D(R) = 8 ∙ 6 = 48.
Then when the first edge on R occurs, C(R) ∙ D(L) = 5 ∙ 9 = 45. Next comes an edge on L, and C(L) ∙
D(R) = 7 ∙ 6 = 42. Then come simultaneous edges on L and R, whereupon C(L) ∙ D(R) = 6 ∙ 6 = 36,
and C(R) ∙ D(L) = 4 ∙ 9 = 36. So we have a steady progression that continues to zero: 54, 48, 45, 42,
36, … , 0. Moreover at each point along this progression, C(L) ∙ D(R) roughly equals C(R) ∙ D(L). In
fact, whenever L and R have simultaneous edges, the two products are exactly equal.

It would make sense then that if we can keep these products equal, we can maintain coordination
between the two wheels. So here’s the plan (referring to step 3. above):

7 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

3a. Monitor the two wheels’ encoder outputs. For each one that changes, decrement its counter.

3b. Since we’re trying to decide whether to pulse a particular wheel’s servo or not, assume that if we
do, we’ll get another encoder edge next time we check; and if we don’t, we won’t. What we want
to check is whether doing so will put one wheel ahead of the other on the next step.

3b. Compare each wheel’s count, minus 1 (looking ahead to the what-ifs, remember), multiplied by
the total distance for the other wheel with the similar product for the other wheel. If it’s
significantly lower, withhold the wheel’s pulse for the current interval. In math parlance, this is:

(C(Wheel) – 1) ∙ D(Other wheel) << (C(Other wheel) – 1) ∙ D(Wheel)

(“<<” here means “significantly less than”, not “shift left”.) Okay, so what does “significantly less
than” mean? This is an important question because, if we had just said “less than”, we’d get pulses
withheld rather frequently, resulting in jerky motion. One way to solve this is to add a fudge factor to
the left-hand side and replace “<<” by “<”. The fudge factor we choose should answer the question,
“How much is C(Wheel) allowed to vary without being ahead of the other one?” The answer,
because we’re dealing with integers is, “½”. If the anticipated count is ahead of the correct count by
no more than one-half an encoder interval, it’s safe to insert a servo pulse. We can’t really do any
better than that!

So, we can add ½ to C(Wheel) above and rewrite the equation thus:

(C(Wheel) + ½ – 1) ∙ D(Other wheel) < (C(Other wheel) – 1) ∙ D(Wheel) , or
(C(Wheel) – ½) ∙ D(Other wheel) < (C(Other wheel) – 1) ∙ D(Wheel) , or
C(Wheel) ∙ D(Other wheel) + D(Wheel) < C(Other wheel) ∙ D(Wheel) + D(Other wheel) / 2

When this condition holds for Wheel, we withhold it’s servo pulse.

Ramping

Inertia is a fact of life. “A body at rest will remain at rest, and a body in motion will remain in motion,
unless acted upon by another force,” said Sir Isaac. And this, of course, applies to robots and robot
wheels. As Andy Lindsay points out in Robotics with the Boe-Bot, starting or stopping motion
without gradual acceleration and deceleration is not only jarring to the servo’s internal mechanisms
but wastes precious battery energy. What’s even worse for us here is that running the servos until the
counts reach zero, then simply ceasing to send servo pulses, will not stop the wheel instantly. Inertia
will keep it moving a little, possibly for another servo pulse or two, completely messing up the
precision we set out to achieve. Fortunately, ramping can solve the problem. Here’s how to do it:

1. Figure out what the maximum velocity will be. Call it Vmax.

2. Determine a minimum velocity. Call it Vmin. This will be the starting and ending velocity. It
could be zero. But sometimes, for snappier performance, setting it to a slightly higher value helps.
Just be sure it’s low enough that stopping at that velocity won’t result in extraneous encoder
pulses!

3. At each step in the servo pulsing process, compute the following for the wheel that’s turning the
farthest:

C, the number of counts remaining, and
D – C, the overall distance, minus the number of counts remaining.

8 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

4. Pick the lowest value among the above two figures and Vmax. This becomes the candidate
instantaneous velocity value. If it’s less than Vmin, use Vmin instead.

The following graph illustrates this principle:

C

D -
C

Vmax

VminRamped Velocity Curve

0 DDistance

Ve
lo

ci
ty

Purists may note that we’re comparing apples and oranges here – velocities and distances. In
reality, there’s a scaling factor involved, which is the time ∆∆∆∆t between the encoder pulses. So
when we say “C”, for example, what we mean is “C / ∆∆∆∆t ”. But when it comes down to
programming this curve, we just scale things so ∆∆∆∆t = 1. Super-duper purists (you know who
you are) will further note that, during ramping, ∆∆∆∆t isn’t even a constant, and they’re right. If the
X-axis in the above curve were Time instead of Distance, the ramped portions wouldn’t be
straight lines, but rather more parabolic in shape. That’s one reason for picking a Vmin > 0. It
helps to avoid that painfully slow parabolic “wallow” near zero.

Once the instantaneous velocity for the fastest wheel is determined, the velocity for the other one can
be made proportional to it.

Wheel Odometry

Up to this point, we’ve dealt with coordinated motion, using the encoders as part of a feedback loop
to control the servos. But what if the servos are being controlled by other means (e.g. in response to
mechanical feelers)? Is there still some way to keep track of the bot’s location? Yes, so long as we
know the direction each wheel is turning, we can infer the Boe-Bot’s trajectory across the floor from
the encoder outputs.

In the simplest case, look what happens when the right wheel moves forward by one ep, leaving the
left wheel anchored in place (δδδδ here is greatly exaggerated).

δ

δ

(x , y)0 0

(x , y)1 1

(x , y)C C w

θ θ−π
2

9 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

The Boe-Bot’s center starts at (x0, y0), with the bot facing in the direction θθθθ. When the right wheel
moves forward, the bot rotates left on its left wheel by an angle δδδδ to its new location, (x1,y1), and new
direction, θθθθ + δδδδ. It would be nice to treat the two wheels independently, wherein each encoder pulse
from each wheel contributes to a change in position and direction without regard for what the other
wheel might be doing at the same time. We can think of each encoder pulse from one wheel as
representing a rotation by δδδδ about the other wheel. By considering the left and right wheels
separately, straight-line motion becomes nothing more than a sequence of left-right steps – almost as
if the Boe-Bot were walking instead of rolling, as the following illustration suggests:

The illustration shows another consequence of this point of view: the tendency of the computed path
to “crab” in a direction opposite the side that took the first step. If both wheels were turning
simultaneously, this would not be happening. Even though the angle of each step is exaggerated here,
it is still something we need to address later on.

Going back to the previous diagram, high-school trig tells us that

x0R = xcR + w/2 cos(θθθθ0R - ππππ/2) = xcR + w/2 sin θθθθ0R

y0R = ycR + w/2 sin(θθθθ0R - ππππ/2) = ycR – w/2 cos θθθθ0R

x1R = xcR + w/2 cos(θθθθ0R - ππππ/2 + δδδδ) = xcR + w/2 (sin θθθθ0R cos δδδδ + cos θθθθ0R sin δδδδ)
y1R = ycR + w/2 sin(θθθθ0R - ππππ/2 + δδδδ) = ycR + w/2 (cos θθθθ0R sin δδδδ – sin θθθθ0R cos δδδδ)
θθθθ1R = θθθθ0R + δδδδ

Solving the above for x1 and y1 in terms of x0 and y0, to eliminate xc and yc, we get

x1R = x0R + w/2 [cos θθθθ0R sin δδδδ – sin θθθθ0R (1 – cos δδδδ)]
y1R = y0R + w/2 [sin θθθθ0R sin δδδδ + cos θθθθ0R (1 – cos δδδδ)]
θθθθ1R = θθθθ0R + δδδδ

Similarly, for a single-step forward movement of the left wheel while keeping the right one still, we
get

x1L = x0L + w/2 [cos θθθθ0L sin δδδδ + sin θθθθ0L (1 – cos δδδδ)]
y1L = y0L + w/2 [sin θθθθ0L sin δδδδ – cos θθθθ0L (1 – cos δδδδ)]
θθθθ1L = θθθθ0L – δδδδ

10 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

What happens if we take a step with the right wheel, followed by one with the left? Substituting the
expressions for x1R and y1R into x0L and y0L above, and θθθθ1R = θθθθ0R + δδδδ for θθθθ0L, we get (after drawing
the curtain and simplifying)

x1L = x0R + w [cos θθθθ0R sin δδδδ – sin θθθθ0R (1 – cos δδδδ)]
y1L = y0R + w [sin θθθθ0R sin δδδδ + cos θθθθ0R (1 – cos δδδδ)]
θθθθ1L = θθθθ0R

These look a lot like the equations for x1R and y1R above, except that w/2 is now w. This means that,
in terms of distance traveled, this left-right sequence is identical to taking a single step with the right
wheel alone at double the distance.

Okay, so what happens if we take a step with the left wheel, followed by one with the right? Doing a
similar substitution as we did above, we find:

x1R = x0L + w [cos θθθθ0L sin δδδδ + sin θθθθ0L (1 – cos δδδδ)]
y1R = y0L + w [sin θθθθ0L sin δδδδ – cos θθθθ0L (1 – cos δδδδ)]
θθθθ1R = θθθθ0L

Notice that the result is the same, except for the signs of the (1 – cos δδδδ) terms.

Now suppose both wheels had moved at once. There’s no direction change, just movement by an
amount wδδδδ in the direction θθθθ, so

x1LR = x0LR + wδδδδ cos θθθθ0LR

y1LR = y0LR + wδδδδ sin θθθθ0LR

θθθθ1LR = θθθθ0LR

Since δδδδ is very small, sin δδδδ ≈≈≈≈ δδδδ, so we could write the above as

x1LR = x0LR + w cos θθθθ0LR sin δδδδ
y1LR = y0LR + w sin θθθθ0LR sin δδδδ
θθθθ1LR = θθθθ0LR

Look familiar? It’s the same as the right-then-left and the left-then-right formulae, but without the
(1 – cos δδδδ) terms. They are these terms that lead to the crabbing noted above, and the direction of the
crabbing depends on which side takes the first step.

But again, since δδδδ is small, cos δδδδ ≈≈≈≈ 1, so 1 – cos δδδδ ≈≈≈≈ 0. Perhaps, we could just eliminate this term
altogether. That way the left-right and right-left equations for position would be the same. Only the
angle equations would be different. Let’s write this now as functions of the vector [x, y, θθθθ] and the
increment δδδδ. These functions will return a vector with the new values of x, y, and θθθθ.

L([x, y, θθθθ], δδδδ) = [x + w/2 cos θθθθ sin δδδδ, y + w/2 sin θθθθ sin δδδδ, θθθθ + δδδδ]
R([x, y, θθθθ], δδδδ) = [x + w/2 cos θθθθ sin δδδδ, y + w/2 sin θθθθ sin δδδδ, θθθθ - δδδδ]

So does this fix the left-right and right-left discrepancy? Well, not exactly. For the right-left case we
get, after cranking out the derivation:

11 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

L(R([x, y, θθθθ], δδδδ), δδδδ)

= [x + w/2 sin δδδδ (cos θθθθ (1 + cos δδδδ) – sin θθθθ sin δδδδ),
 y + w/2 sin δδδδ (sin θθθθ (1 + cos δδδδ) + cos θθθθ sin δδδδ),
 θθθθ]
≈ [x + w cos θθθθ sin δδδδ – w/2 sin2 δδδδ sin θθθθ,
 y + w sin θθθθ sin δδδδ + w/2 sin2 δδδδ cos θθθθ,
 θθθθ] , by using the approximation cos δδδδ ≈≈≈≈ 1.

And for the left-right case,

R(L([x, y, θθθθ], δδδδ), δδδδ)

= [x + w/2 sin δδδδ (cos θθθθ (1 + cos δδδδ) + sin θθθθ sin δδδδ),
 y + w/2 sin δδδδ (sin θθθθ (1 + cos δδδδ) – cos θθθθ sin δδδδ),
 θθθθ]
≈ [x + w cos θθθθ sin δδδδ + w/2 sin2 δδδδ sin θθθθ,
 y + w sin θθθθ sin δδδδ – w/2 sin2 δδδδ cos θθθθ,
 θθθθ] , by using the approximation cos δδδδ ≈≈≈≈ 1.

These look like the equations for simultaneous motion, except for terms containing sin2 δδδδ this time,
differing in sign between the two. And these, once again, are crabbing terms.

It would seem, then, that our goal of treating the wheels independently is unobtainable. Perhaps we
should relax that requirement just slightly. If we keep track of which side moved last, maybe we can
invoke a slightly formula if the opposite side moves next, in order to undo the crabbing. For example,
let’s say the right side moves first then the left. But this time, before we apply the formulae for x and
y, let’s compute the new value of θθθθ (which rolls it back to its previous value) and use it instead of the
current one. So let’s define new functions in which the x and y terms are computed with the new
value of θθθθ (i.e. θθθθ is computed first, then x and y).

L’([x, y, θθθθ], δδδδ) = [x + w/2 cos(θθθθ+ δδδδ) sin δδδδ, y + w/2 sin(θθθθ+ δδδδ) sin δδδδ, θθθθ + δδδδ]
R’([x, y, θθθθ], δδδδ) = [x + w/2 cos(θθθθ – δδδδ) sin δδδδ, y + w/2 sin(θθθθ– δδδδ) sin δδδδ, θθθθ – δδδδ]

Now, when we apply R then L’, or L then R’, we get

L’(R([x, y, θθθθ], δδδδ), δδδδ) = [x + w cos θθθθ sin δδδδ, y + w sin θθθθ sin δδδδ, θθθθ]
R’(L([x, y, θθθθ], δδδδ), δδδδ) = [x + w cos θθθθ sin δδδδ, y + w sin θθθθ sin δδδδ, θθθθ]

But this is identical to the result we got when both wheels moved at once, and the crabbing terms are
gone! So far, so good.

Up until this point, we’ve assumed that δδδδ was always in the same direction. But what happens when
we move forward with one wheel then back, or forward with one wheel and back with the other one?
In the former case, we ought to end up right back where we started. In the latter case, x and y should
be the same but θθθθ should increment or decrement by 2 δδδδ. To summarize, the following table presents
the results obtained by various combinations of L, R, L’, R’, δδδδ, and – δδδδ. The shaded entries are the
preferred calculations for the given situation. (The small-angle approximation cos δδδδ ≈≈≈≈ 1 is used
throughout for simplification. However, it was not necessary for the shaded formulae.)

12 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

Description Function Application Result Vector
L(R([x, y, θθθθ]), δδδδ), δδδδ)

or
L’(R’([x, y, θθθθ]), δδδδ), δδδδ)

x + w cos θθθθ sin δδδδ – w/2 sin2 δδδδ sin θθθθ,
y + w sin θθθθ sin δδδδ + w/2 sin2 δδδδ cos θθθθ,
θθθθ

R(L([x, y, θθθθ]), δδδδ), δδδδ)
or

R’(L’([x, y, θθθθ]), δδδδ), δδδδ)

x + w cos θθθθ sin δδδδ + w/2 sin2 δδδδ sin θθθθ,
y + w sin θθθθ sin δδδδ – w/2 sin2 δδδδ cos θθθθ,
θθθθ

L(R’([x, y, θθθθ]), δδδδ), δδδδ)
x + w cos θθθθ sin δδδδ – w sin2 δδδδ sin θθθθ
y + w sin θθθθ sin δδδδ + w sin2 δδδδ cos θθθθ
θθθθ

R(L’([x, y, θθθθ]), δδδδ), δδδδ)
x + w cos θθθθ sin δδδδ + w sin2 δδδδ sin θθθθ
y + w sin θθθθ sin δδδδ – w sin2 δδδδ cos θθθθ
θθθθ

Move both wheels
forward.

L’(R([x, y, θθθθ]), δδδδ), δδδδ)
or

R’(L([x, y, θθθθ]), δδδδ), δδδδ)

x + w cos θθθθ sin δδδδ,
y + w sin θθθθ sin δδδδ,
θθθθ

R(R([x, y, θθθθ]), δδδδ), –δδδδ)
x + w/2 sin2 δδδδ sin θθθθ
y – w/2 sin2 δδδδ cos θθθθ
θθθθ

R’(R’([x, y, θθθθ]), δδδδ), –δδδδ) x – w/2 sin2 δδδδ sin θθθθ
y + w/2 sin2 δδδδ cos θθθθ
θθθθ

Move right wheel
forward, then back.

R’(R([x, y, θθθθ]), δδδδ), –δδδδ)
or

R(R’([x, y, θθθθ]), δδδδ), –δδδδ)

x
y
θθθθ

L(R([x, y, θθθθ]), δδδδ), –δδδδ)
or

L’(R’([x, y, θθθθ]), δδδδ), –δδδδ)

x + w/2 sin2 δδδδ sin θθθθ
y – w/2 sin2 δδδδ cos θθθθ
θθθθ + 2 δδδδ

L’(R([x, y, θθθθ]), δδδδ), –δδδδ) x + w (sin2 δδδδ sin θθθθ + sin3 δδδδ cos θθθθ)
y – w (sin2 δδδδ cos θθθθ – sin3 δδδδ sin θθθθ)
θθθθ + 2 δδδδ

Move right wheel
forward, then left
wheel back.

L(R’([x, y, θθθθ]), δδδδ), –δδδδ) x
y
θθθθ + 2 δδδδ

R(L([x, y, θθθθ]), –δδδδ), δδδδ)
or

R’(L’([x, y, θθθθ]), –δδδδ), δδδδ)

x – w/2 sin2 δδδδ sin θθθθ
y + w/2 sin2 δδδδ cos θθθθ
θθθθ + 2 δδδδ

R’(L([x, y, θθθθ]), –δδδδ), δδδδ) x – w (sin2 δδδδ sin θθθθ + sin3 δδδδ cos θθθθ)
y + w (sin2 δδδδ cos θθθθ – sin3 δδδδ sin θθθθ)
θθθθ + 2 δδδδ

Move left wheel
back, then right wheel
forward.

R(L’([x, y, θθθθ]), –δδδδ), δδδδ) x
y
θθθθ + 2 δδδδ

13 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

What this table tells us is this:

1. If two wheels are moving in the same direction, apply the normal function for the first one
and the reverse function for the second.

2. If one wheel moves one direction then the other, apply the normal function to the first
movement and the reverse function to the second.

3. If two wheels are moving in opposite directions, apply the reverse function to the first one
and the normal function to the second.

4. In all other cases, apply the normal function.

Number three is a problem, though. How are we to know when the first wheel’s encoder pulse comes
along what’s going to happen next? In all other cases, we’d just apply the normal function to the first
in a two-part sequence and wait to see what happens next. But rule three is an exception requiring
either putting the movement in abeyance until the next pulse comes along or applying the normal
function with the option of reversing it later. A third option would be to ignore the small error that
results from applying the normal function first and double checking that it doesn’t accumulate.
Because the last choice has the additional benefit of simplifying the rules considerably, we’ll choose
it with the option of modifying it if errors accumulate. So the rules can be restated as:

1. If different wheels are moving in the same direction, or if the same wheel changes direction,
apply the normal function for the first movement and the reverse function for the second.

2. In all other cases, apply the normal function.

 The discussion to this point assumes we have some means to calculate all these sines, cosines, and
fancy multiplications. If the BASIC Stamp had floating-point transcendental functions, yes, that part
would be a cinch. But with only its integer math, and SIN and COS functions that work with byte
values, we could be in trouble.

All is not lost, however. Instead of trying to calculate sines and cosines from θθθθ and θθθθ ±±±± δδδδ, we’ll just
start with known values for sin θθθθ and cos θθθθ and update them directly whenever the angle changes.
The following identities will help:

cos(θθθθ + δδδδ) = cos θθθθ cos δδδδ – sin θθθθ sin δδδδ
sin(θθθθ + δδδδ) = sin θθθθ cos δδδδ + cos θθθθ sin δδδδ
cos(θθθθ – δδδδ) = cos θθθθ cos δδδδ + sin θθθθ sin δδδδ
sin(θθθθ – δδδδ) = sin θθθθ cos δδδδ – cos θθθθ sin δδδδ

Now sin δδδδ and cos δδδδ are constants for any given Boe-Bot. Once they’re determined through some sort
of calibration procedure, we can just replace them with named constants, say, SD and CD. In a
similar vein, sin θθθθ and cos θθθθ are now just variables, which we’ll call Ydir and Xdir, for Y-direction
and X-direction. To update Ydir and Xdir, for example, when we add δδδδ to θθθθ, we might use BASIC
statements like:

Ydir = (Ydir ** CD) + (Xdir ** SD)
Xdir = (Xdir ** CD) – (Ydir ** SD)

This is an oversimplification, of course, since we need to pay attention to details like scaling and
negative values. The other concern, since we’re using integer math, is whether Ydir and Xdir will

14 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

start to diverge from the unit circle after many repeated calculations. One way to guarantee this won’t
happen is to compute

Xdir = √√√√r2 – Ydir2

(where r is the radius of the circle used to account for integer scaling of Ydir), instead of using the
original formula for Xdir. Unfortunately, to do this with the precision needed would require 32-bit
math, and that’s a little out of reach on the Stamps.

But not to despair. There’s a rather interesting algorithm from the annals of computer graphics for
computing points on a circle. It goes like this:

Xdirp = Xdir0 – Ydir0 ∙ m/(2n)
Ydir1 = Ydir0 + Xdirp ∙ m/n
Xdir1 = Xdirp – Ydir1 ∙ m/(2n)

These three computations are applied in sequence, using integer math. The remarkable thing about
them is that for certain initial conditions and values for m and n (m < n), Xdir and Ydir do not
accumulate errors, staying on a circle centered at the origin. An additional nice feature of doing the
computations in sequence is that no auxiliary variables are needed for intermediary results. Xdir0,
Xdirp, and Xdir1 can all be the same variable, as can Ydir0 and Ydir1.

The following Stamp program implements this algorithm. Try it out with the values provided (and
with other values) to see how well it keeps from wandering off.

'{$STAMP BS2}
'{$PBASIC 2.5}

R CON 4096
M CON 51448 'As used here, M/N = 51488/(65536 * 4) = 0.1964
N CON 4
P CON 129

Xdir VAR Word
Ydir VAR Word
i VAR Word

Xdir = R
FOR i = 1 TO 250
 Xdir = Xdir - ((1 - (Ydir.BIT15 << 1)) * (ABS(Ydir) ** M / N >> 1))
 Ydir = Ydir + ((1 - (Xdir.BIT15 << 1)) * (ABS(Xdir) ** M / N))
 Xdir = Xdir - ((1 - (Ydir.BIT15 << 1)) * (ABS(Ydir) ** M / N >> 1))
 DEBUG SDEC Xdir, " ", SDEC Ydir, CR
NEXT

If we write m/n as a single constant δδδδ (rather suggestively), Xdir as C, and Ydir as S, the above
sequence becomes

Cp = C0 – S0 ∙ δδδδ / 2
S1 = S0 + Cp ∙ δδδδ
C1 = Cp – S1 ∙ δδδδ / 2

Now let’s see what we get when we solve for C1 and S1 in terms of C0 and S0 only:

15 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

C1 = C0 ∙ (1 – δδδδ2/ 2) – S0 ∙ (δδδδ – δδδδ3 / 4)
S1 = S0 ∙ (1 – δδδδ2/ 2) + C0 ∙ δδδδ

For small δδδδ, sin δδδδ ≈≈≈≈ δδδδ. In fact, an even better approximation for sin δδδδ is δδδδ – δδδδ3 / 6. Again, for small δδδδ,
cos δδδδ ≈≈≈≈ (1 – δδδδ2/ 2). Just to see how good these approximations are, let’s use a typical value from the
Boe-Bot. For the Boe-Bot, it takes about 50 encoder pulses from one wheel to spin in a full circle
around the other one. So let’s say δδδδ = 2ππππ / 50 or 0.12566. Now compare values:

δδδδ δδδδ – δδδδ3 / 4 δδδδ – δδδδ3 / 6 sin δδδδ (1 – δδδδ2/ 2) cos δδδδ
0.12566 0.12516 0.12533 0.12532 0.99210 0.99212

This isn’t half bad, so it’s not too far-fetched to write the above equations as

C1 = C0 ∙ cos δδδδ – S0 ∙ sin δδδδ
= r cos θθθθ cos δδδδ – r sin θθθθ sin δδδδ
= r cos(θθθθ + δδδδ)

S1 = S0 ∙ cos δδδδ + C0 ∙ sin δδδδ
= r sin θθθθ cos δδδδ + r cos θθθθ sin δδδδ
= r sin(θθθθ + δδδδ)

where θθθθ is the angle formed by x = C and y = S on the circle about the origin with radius r. So we’ve
come full circle (so to speak). Starting from a simple, stable, integer-only algorithm, we see that it’s
equivalent to the more complex sum-of-angles sine and cosine identities.

So now we have methods we can use in the BASIC Stamp to compute not only the Boe-Bot’s x and y
position coordinates, but also its direction θθθθ as expressed by the cosine and sine factors C and S. Once
δδδδ is determined for a given Boe-Bot, all that remains is finding integer values for r, m, and n that not
only keep C and S confined to a circle but maintain the relationship δδδδ = m/n. A sample BASIC Stamp
program that implements these findings in given in the last section.

Practical Constraints

Sources of Error

As is always the case, a good dose of theory is seldom sufficient to deal with the real world. And this
is certainly true in the case of robot wheel encoders. Up to this point, we’ve been talking about the
Boe-Bot as if it were some idealized creature existing only on graph paper. Such a creature would
have super hard, infinitesimally skinny wheels, each touching the rolling surface at a single point.
They would have infinite friction in the rolling direction and zero turning friction about the point of
contact. Plus, the wheels would be exactly the same size, and their axles would align perfectly. And
finally, they would roll only on super hard, perfectly flat, smooth, level surfaces. Determining the two
measurements needed for accurate navigation – the wheels’ diameter and the distance between them –
would thus be an exercise simply in counting decimal places.

But the observable universe doesn’t afford such luxuries. Any wheeled robot will have a tread to grip
the rolling surface. With that tread comes a finite width, and with that width comes uncertainty about
just how far apart the wheels are. What’s worse, if the wheels wobble a little, that uncertainty can
vary with rotational position. Also, because the tread may be soft (or worse yet, if the rolling surface

16 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

is soft or has pile like a carpet), the effective wheel diameter carries its own uncertainties. Add to that
the fact that when a robot turns, each wheel must skid a little about some point of rotation. It’s the
distance between the points of rotation of the two wheels that determine their effective separation.
With a wide, grippy tread – even on a hard, smooth surface – these points can vary, depending upon
how sharp the turn is.

Keeping track of position and direction through encoders is known as “wheel odometry”, and this is
just a fancy way of saying “dead reckoning”. Under dead reckoning, navigation is done without
external references. And any errors that slip into the system have a way of accumulating. Without
some external reference from which to obtain periodic corrections, dead reckoning will, over time,
exhibit larger and larger position and orientation errors. Does that mean it’s not useful? No, of course
not! The Mars rovers employ wheel odometry, along with rate gyros (another aid to dead reckoning)
– to keep track of their short-term positions on the Martian surface. But they also employ their
onboard cameras to maintain visual references for correcting the odometry errors. A properly-
implemented and calibrated odometry system can easily provide good short-term navigation by itself.
When corrected by periodic external feedback, it can perform well in the long-term as well.

Calibration

The key to success in any odometry system is calibration. We could examine and analyze the sources
of deterministic error and come up with theoretical values for the effective wheel diameter and
separation in a given environment. Or, we could just make some good assumptions, plop the Boe-Bot
down and see how it does. If it’s off, refine the assumptions and try again. What, then, would be a
good test? For distance, it’s easy. Just move forward by 100 eps, and measure to see how far that is in
real-world units. Divide by 100, and we have our inches-per-ep, millimeters-per-ep, or furlongs-per-
ep figure. If we wanted, we could then back-calculate to see what the effective wheel diameter is. The
formula is:

Effective_diameter = 16 ∙ Distance_per_ep / ππππ

The same applies to angular calibration. If we could determine the effective diameter and separation
of the wheels, we could plug these figures into the control program, et voilá, a calibrated robot. An
easier approach is to guess at a figure that combines these two measurements, i.e. the eps-per-full-
turn figure, or the number of encoder pulses needed from one wheel, while the other remains still, to
effect a full 256-brad turn. Then, plug this figure into the control program and send the Boe-Bot over
a square course that returns to its starting point. If the Boe-Bot comes up short, we know our eps-per-
full-turn figure was too low, i.e., it didn’t really turn as far as we thought it would. If it overshoots the
starting point, we know the figure was too high. Either way, we can adjust it until the Boe-Bot returns
exactly to its starting point. Again, if we wanted to, we could then use the effective wheel diameter
we calculated before, combine it with the eps-per-full-turn figure, and come up with the effective
wheel separation. Here’s the formula:

Effective_separation = Eps_per_full_turn ∙ Distance_per_ep / (2π)

To take advantage of the calibration, of course, we really don’t need to calculate either of these two
values. But it might just be interesting to see how close they are to measurements taken with calipers
or a ruler!

Another, more accurate and less time-consuming method than trial and error for determining the eps-
per-full-turn figure, involves an optical sensor. Let’s say we outfit the Boe-Bot with such a sensor,
point the sensor forward, and place the bot on a smooth, level surface in a visually “interesting”

17 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

environment. We now rotate the Boe-Bot one ep at a time. While doing so, we can record the amount
of light the Boe-Bot “sees” at each angle that it points. When it returns to the start position, after
making one full revolution, it should see the same light level it saw when it started. By recording
several full rotations, we should be able to obtain a periodic waveform that repeats every t readings,
where t is the (possibly fractional) number of encoder pulses in a full rotation.

To determine the number t accurately, we use a statistical method called autocorrelation. This is just
a special application of the normal correlation coefficient. That coefficient is a calculation performed
on a set of number pairs to see if the first numbers of the pairs rise or fall in concert with the second
numbers. It is given by the formula:

ρρρρ(x, y) = (n ΣΣΣΣxiyi – ΣΣΣΣxi ΣΣΣΣyi) / √√√√(n ΣΣΣΣxi
2 – (ΣΣΣΣxi)

2) (n ΣΣΣΣyi
2 – (ΣΣΣΣyi)

2)

where each (xi, yi) represents one data pair from the set of n pairs, and the symbol ΣΣΣΣ denotes a
summation of the term that follows over the range i = 1 to n. The number ρρρρ can range from –1
(perfect inverse correlation) to 1 (perfect correlation), with 0 representing no correlation whatsoever.

In autocorrelation, we compare a sequence of numbers to itself, offset by some amount m. Actually,
we pick two equal-length subsequences from the main sequence and perform the above computation
upon them as if they were separate. If we were to pick the same subsequences (i.e. m = 0, or no
offset), ρρρρ would certainly equal 1, since any given sequence correlates perfectly with itself. If the
sequence repeats itself with period t, we can pick one subsequence starting at 0, and the other starting
at m = t, and we should again expect to find that ρρρρ = 1 or close to it, depending on how accurately the
sequence repeats.

So to find t, we could select several sequential values for m and see which one yields the highest
value of ρρρρ. If ρρρρ is very close to 1, we can assume we’ve found the period of the waveform.

But the waveform may not have an integer period. In the Boe-Bot’s case, there’s no reason to assume
that after any whole number of encoder pulses we’re going to return exactly to our starting angle. To
account for this, we need to resort to linear interpolation. Suppose we wanted to select an offset value
of 50.7 for the second subsequence (i.e. y) in the calculation of ρρρρ. To do so, we would use the
following formula for each element of y:

yi = (1 – p) xi+m + p xi+m+1

where m is the integer part of the offset (in this case, 50), and p is the fractional part (in this case,
0.7). This effectively yields a new subsequence that’s offset from the original by a fractional amount.

To find the period t, then, we first find the value of m that maximizes ρρρρ. This is not complicated to
do. We just try all of them in the neighborhood we’re interested in (i.e. around 50; so from 30 to 70,
say) and pick the one that gives the highest ρρρρ. We know from this that the optimum fractional value
will be between m – 1 and m + 1. Next we try however many fractional values in between these two
that our precision requirements dictate and pick the one yielding the highest ρρρρ for our value of t.

In the section titled “BASIC Stamp Programs”, one part of the calibration program presented there
records 256 light intensity values while incrementing the angle by one ep each time. Because it’s not
practical to calculate ρρρρ in the Stamp itself, and thus to find t, this is done in a separate, PC-based
program.

18 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

Encoder Hardware

The encoder hardware consists of a photoreflective sensor aimed at the inside of the Boe-Bot wheel.
When the wheel is positioned so that one of the holes is in front of the sensor, no light is reflected
back, and the sensor’s output floats. When a portion of the wheel is present to reflect light, the sensor
detects its shiny black surface and pulls its output down.

The sensor used is modulated. That means that it emits IR light in a high-frequency pulse stream and
expects to see pulsed light reflected back. If all it sees is a constant brightness, it knows it’s coming
from somewhere else and won’t respond. Such a sensor can be used in a wide range of ambient
lighting conditions without the use of special shrouds to shield it. The sensor arrangement (pulled
back from the wheel for illustrative purposes) is shown below:

Because the output floats under no-detect conditions, a 10K pullup resistor to Vdd is necessary to
provide a full 5-volt swing. In all other regards, the output is completely digital, complete with
hysteresis for stability.

BASIC Stamp Programs

Calibration

By combining all the theory, the practical considerations, and the hardware, we can come up with
some BASIC Stamp code to drive the Boe-Bot using the encoders for feedback. The first step,
though, is to calibrate the servos and the encoders. This consists of three separate operations:

1. Null the servos, so that they do not rotate when fed 1.5ms pulses.

2. Establish the relationship between pulse width and servo speed.

3. Determine the exact number of encoder pulses in a full 256-brad turn on the Boe-Bot’s axis.

Step one is described in Robotics with the Boe-Bot. The calibration program shown here has a section
which generates a repeated sequence of 1.5ms pulses to both servos so they can be adjusted.
However, it’s rather difficult to get an adjusting tool into the holes provided once the servos are
installed on the Boe-Bot, so it’s best to perform this step prior to final assembly.

19 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

In step two, we have to determine for each servo – because they may differ – the correspondences
between the various pulse widths and the actual rotation speeds. But we don’t have to do this by hand:
we’ve got encoders to help! The idea is first to check the servos to make sure they’re properly nulled.
This is done by sending each a stream of 1.5ms pulses to see if the wheels move. If they do, the
encoder output will change, and the program can detect it an flag the error.

The next step is to determine a single maximum velocity that both wheels can sustain in both
directions. To do this we send both servos a stream of 256 pulses of the same width, at one extreme of
their pulse range. This will cause the Boe-Bot to spin around. While it’s doing this, the program
counts the transitions on each encoder output. Next we do the same at the other extreme., and the
Boe-Bot will spin the other direction. Finally, we take the lowest of the four counts measured, and
this becomes the maximum common sustainable speed.

Next, we cycle the servos through a series of pulse streams, each with 256 pulses, but each series with
a different pulse width. Again, we count edges for each servo. From this data one could construct a
graph for each servo of its velocity at each of the tested pulse widths. But this is not what we want.

What we really want is a graph of the pulse width for each of several equally-spaced velocities. To
get these, the program uses linear interpolation between the points on the first graph to approximate
the pulse values we need. The principle is illustrated below for one wheel in one direction:

0

10

20

30

40

50

60

70

80

90

100

1.71.61.5

EN
CO

DE
R

CO
U

NT
S

SERVO PULSE (MS)

Measured Values
Interpolated Values

20 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

Once the interpolated pulse widths for sixteen equally-spaced velocities are obtained in each direction
for each servo, they are written to the BASIC Stamp’s EEPROM in the first 64 bytes. The byte values
represent offsets from the null value of 1.5ms and are scaled appropriately for the BASIC stamp
version being used.

Finally, in step three, we bring one of the photoresistors included with the Boe-Bot to bear on the
angle calibration. The data thus obtained can later be subjected to an autocorrelation analysis, as
discussed in the theory section. To perform the angle calibration, one photoresistor should be wired as
shown in Robotics with the Boe-Bot, page 194, to pin 6. But substitute a 0.1µF capacitor (marked
“104”) for the .01µF capacitor shown. We can do this because we don’t need to monitor the
photoresistor while the servos are running and can therefore measure longer discharge times. The
photoresistor’s leads should be bent so it’s aiming forward. When recording the angle data, be sure to
place the Boe-Bot on the same flat, smooth surface you’ll be running it on. For these measurements,
the surroundings should have visual contrast. For example, an all white room with no windows would
be bad, but a room with daylight coming through a single window or one with a lamp on would be
ideal. Also, while running this portion of the program, there should be no movement in the room. The
photoresistor should see exactly the same scene for every revolution of the Boe-Bot. So be sure to sit
stock still or else dive out of sight before this segment starts.

When this section of the program is running, the Boe-Bot will rotate one ep at a time, alternating
movements with its left and right wheels. After each increment, it will read the photoresistor and save
the word value thus obtained to EEPROM. It will do this 256 times, completing about five full
revolutions.

The Stamp program that does all this, Calibrate_All.bs2, is sensitive to the number of times the reset
button is pressed in rapid succession before it begins. Different numbers of presses result in different
sections of code being run. These are summarized below:

1 press: Dump all the data obtained.

2 presses: Send the servos 1.5ms pulses for nulling.

3 presses: Calibrate the servo velocities.

4 presses: Obtain photoresistor data.

The format of the data dumped by this program is shown below:

Copy and paste these DATA statements into your BASIC Stamp programs:

DATA @0, 7,9,11,13,16,17,19,21
DATA 24,26,28,31,36,40,48,61
DATA 3,5,7,9,11,13,15,17
DATA 20,22,25,28,31,35,40,49
DATA 7,9,11,13,15,17,19,21
DATA 23,26,28,30,33,37,41,49
DATA 3,5,7,9,11,13,15,17
DATA 20,23,25,28,31,36,42,53

Autocorrelation data for Calibrate_All.exe:

58,51,45,38,33,28,25,22
19,17,15,14,12,11,10,10
10,10,10,10,11,12,12,13

21 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

15,17,19,21,24,29,34,40
48,57,65,71,77,81,84,85
88,88,89,89,89,86,85,82
79,72,65,55,47,40,35,30
26,23,20,18,16,14,13,12
11,10,10,10,9,10,10,11
11,13,14,15,17,20,22,26
31,37,44,51,61,69,73,77
82,84,86,87,88,88,89,87
85,83,81,77,70,59,53,45
38,32,29,25,21,19,17,15
13,12,11,10,10,9,9,10
10,10,11,12,13,14,16,18
21,24,28,32,39,46,54,62
70,75,79,82,85,86,88,88
89,88,86,84,82,79,74,66
57,47,42,36,31,27,24,21
18,16,15,13,12,11,10,10
9,9,9,10,10,12,12,13
15,17,19,22,26,31,36,42
51,59,67,72,77,82,85,86
88,88,89,89,89,86,84,82
79,72,64,55,46,39,35,30
26,22,20,18,16,14,13,12
11,10,10,10,10,10,10,11
12,13,14,16,18,21,23,27
33,39,45,53,63,71,76,80
85,86,88,89,90,90,90,88
86,83,81,76,68,58,51,43

END

The first 64 bytes of data saved in EEPROM are required by some of the other programs listed here.
You can either leave the data in EEPROM or copy and paste the DATA statements output by the
DEBUG port (your own, not the ones listed here) into your program directly. That way if the values
in EEPROM ever get overwritten, they will be restored when you reload your program.

The remaining data are from the photoresistor. They may be analyzed by the program
Calibrate_All.exe available for download from www.parallax.com. To use this program, just make
sure you’ve run all sections of Calibrate_All.bs2. While it’s still loaded in the Boe-Bot, connect the
Boe-Bot to your PC, and run Calibrate_All.exe. It will download all the data from the Boe-Bot and
perform the necessary calibration computations, including the autocorrelation optimization. A typical
output screen looks like the one on the following page. On the left-hand side, the velocity data are
plotted and redisplayed for copying and pasting. (Select all the text, and use ctrl-C to copy.) On the
right-hand side, the photoresistor data are shown in red with the autocorrelation data in green.
Vertical yellow bars denote the optimum detected period. The top bar presents this value numerically
along with the computed correlation coefficient. This value has to be at least 0.975 to be acceptable,
but the value of 1.000 shown here is highly unusual. If the correlation value is below 0.975 or if
there’s not enough contrast in the photoresistor data, an error message will appear, and you will have
to rerun Calibrate_All.bs2 under better lighting conditions. Assuming good data, calibration
constants will appear in the text box below the graphs. These include an optimized value for
SDIRINC, the sin δδδδ factor used by the odometry routines to track orientation. The value is chosen not
only to follow the pulses-per-revolution value correctly, but also to minimize divergence of the sine
and cosine components from a true circle. You can copy and paste these CONstant statements into
the BASIC Stamp programs that need them.

22 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

A listing for the calibration program follows. Some lines are too long to display in the available page
width. Those are indicated by a continuation character . This means that the next line of text should
actually be keyed as a continuation of the current line.

Demo Program (CALIBRATE_ALL.bs2)
'{$STAMP BS2}
'{$PBASIC 2.5}

'========[Calibrate_All.BS2]===

'This program performs several calibration functions, depending on how it's
'started:

' 1. A single (normal) reset causes calibration data to be dumped to the debug port.

' 2. Pressing reset twice in rapid succession causes the servos to be continuously
' pulsed with 1.5ms pulses, so they can be nulled.

' 3. Pressing reset three times in rapid succession calibrates the wheel servos.
' For each servo AND FOR each direction it calculates the correct pulse widths
' for sixteen equally-spaced velocities. It stores the 64 byte values thus
' obtained in the first 64 bytes of the Stamp's EEPROM. The Boe-Bot needs to be
' sitting on a flat, smooth surface for this operation. (See documentation.)

' 4. Pressing reset four times in rapid succession obtains the data necessary for
' calibrating the angular rate constants. It reads the output from a photoresistor
' at each of 256 minimally-spaced angles and stores the word values obtained
' in locations 64 - 575 of the Stamp's EEPROM. This data is later downloaded by the
' PC program Calibrate_Angle.exe, which performs an autocorrelation to determine
' how many pulses (to the nearest 1/256th pulse) in a complete revolution. The
' Boe-Bot needs To be sitting on a flat, smooth surface for this operation.
' (See documentation.)

23 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

'Written by Philip C. Pilgrim 9 April 2004

'---------[Time constants for various BASIC Stamps]----------------------------

#IF ($Stamp = BS2) OR ($Stamp = BS2E) #THEN

 NULL CON 750 'Pulse width for 1.5ms pulse.
 SCALE CON $100 '256 * amount to scale pulses by.

#ELSE

 NULL CON 1875 'Pulse width for 1.5ms pulse.
 SCALE CON $280 '256 * amount to scale pulses by.

#ENDIF

'---------[Constants for all Stamps]---

MAXPULS CON 100 'Adder/subtractor (before scaling) to NULL for max speed.

RIGHT CON 0 'Constants used as subscripts into bit arrays.
LEFT CON 1
CCW CON 0
CW CON 1
FWD CON 0
BAK CON 1

Photo PIN 6 'Photo resistor input.

SenseR PIN 10 'Lefthand encoder input.
SenseL PIN 11 'Righthand encoder input. (MUST be SenseL + 1.)

MotorR PIN 12 'Lefthand motor output.
MotorL PIN 13 'Righthand motor output. (MUST be MotorL + 1.)

Sense CON SenseR 'Base address for encoders.
Motor CON MotorR 'Base address for motors.

Pulse VAR Byte 'Current unscaled or nulled pulse value.
pPulse VAR Byte 'Previous pulse value (used in interpolation).

i VAR Word 'General FOR/NEXT index.
Value VAR Word
p VAR Byte 'Index into EEPROM table.
n VAR Byte(2) 'Encoder counts for both sides.
nPrev VAR Byte(2) 'Previous encoder counts for both sides.
v VAR Byte(2) 'Next velocity index we're looking for (both sides).
nt VAR Byte 'Next encoder count to find, corresponding to v.
pt VAR Byte 'Interpolated pulse width to get the desired count.
nMax VAR Byte 'Maximum sustainable velocity (encoder count).

Prev VAR Bit(2) 'Previous readings from encoders.
New VAR Bit(2) 'Current readings from encoders.
Side VAR Bit 'Side index (RIGHT or LEFT).
Dir VAR Bit 'Direction index (FWD or BAK).
Opp VAR Bit

Veloc VAR Nib

Dist VAR Byte(2) 'Distance for each wheel to travel.
Counts VAR Byte(2) 'Encoder pulse countdown for each wheel.

'---------[EEPROM table of pulse sample points]--------------------------------

STEPS CON 13 'Pulse points at which to sample servo speeds.
 DATA @576, 0, 1, 2, 4, 6, 8, 10, 15, 20, 30, 40, 50, 60, 100

'=========[Program starts here]==

READ 576, i
WRITE 576, i + 1
PAUSE 1000
WRITE 576, 0
SELECT i

 CASE 0

 PAUSE 1000
 DEBUG "Copy and paste these DATA statements into your BASIC Stamp programs:", CR, CR
 FOR i = 0 TO $3f
 IF (i = 0) THEN
 DEBUG "DATA @0, "
 ELSEIF (i & 7 = 0) THEN
 DEBUG "DATA "
 ENDIF
 READ i, p
 DEBUG DEC p
 IF (i & 7 = 7) THEN DEBUG CR ELSE DEBUG ","
 NEXT
 DEBUG CR, "Autocorrelation data for Calibrate_All.exe:", CR, CR
 FOR i = $40 TO $23f STEP 2
 READ i, n(0)

24 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

 READ i+1, n(1)
 DEBUG DEC n(0) << 8 + n(1)
 IF (i & 15 = 14) THEN DEBUG CR ELSE DEBUG ","
 NEXT
 DEBUG CR, "END", CR
 END

 CASE 1

 DO
 PULSOUT MotorR, 750
 PULSOUT MotorL, 750
 PAUSE 50
 LOOP

 CASE 2

 GOTO Calibrate_Veloc

 CASE 3

 PAUSE 5000
 FOR i = 0 TO 512 STEP 2
 HIGH Photo
 PAUSE 6
 RCTIME Photo, 1, Value
 WRITE i + 64, Value.HIGHBYTE
 WRITE i + 65, Value.LOWBYTE
 Dist(LEFT) = i.BIT1
 Dist(RIGHT) = 1 - Dist(RIGHT)
 Dir(LEFT) = FWD
 Dir(RIGHT) = BAK
 Veloc = 1
 GOSUB DoMove
 NEXT
 END

 ENDSELECT
 END

Calibrate_Veloc:

'---------[Make sure servos are nulled]--

Pulse = 0 'Pulse width is null value.
GOSUB Counter 'Count encoders for 256 servo pulses.
IF (n(RIGHT) > 1 OR n(LEFT)> 1) THEN Error 'More than one pulse is error.

'---------[Find maximum sustainable rotation rate]-----------------------------

Pulse = MAXPULS */ SCALE 'Pulse width for fastest speed.
Dir = CCW 'Direction is counter-clockwise.
GOSUB Counter 'Count encoders for 256 servo pulses.
nMax = n(RIGHT) MAX n(LEFT) 'Pick the smallest encoder count.
Dir = CW 'Now go the other way.
GOSUB Counter 'Count encoders for 256 servo pulses.
nMax = nMax MAX n(RIGHT) MAX n(LEFT) */ $F8 'Pick the smallest encoder count * 31/32.
IF (nMax <= 1) THEN Error 'If an encoder didn't respond, then error.

'---------[Get interpolated pulse widths in each direction]--------------------

FOR Dir = CCW TO CW 'Once for one direction; once for the other.
 pPulse = 0 'Previous pulse width deemed zero.
 FOR Side = RIGHT TO LEFT 'Clear the count and velocity index arrays.
 nPrev(Side) = 0
 v(Side) = 0
 NEXT
 FOR p = 0 TO STEPS - 1 'Index over the sample points.
 READ p + 577, Pulse 'Get the next sample point.
 Pulse = Pulse */ Scale 'Scale it for this Stamp.
 GOSUB Counter 'Count encoders for 256 servo pulses.
 DEBUG DEC Pulse, ": ", DEC n(RIGHT), " ", DEC n(LEFT), CR
 FOR Side = RIGHT TO LEFT 'For both sides...
 DO 'Do until all interpolations in this section are done.
 nt = nMax * (v(Side) + 1) >> 4 'Scale nt to nMax.
 DEBUG " (", DEC nt, ")", CR
 IF (v(Side) <= 15) THEN 'If v were 15, that side would be finished.
 IF (nt >= nPrev(Side) AND n(Side) >= nt) THEN 'If nt is between observed values...
 'Use linear interpolation to get pt.
 pt = (Pulse * (nt - nPrev(Side)) + (pPulse * (n(Side) - nt))) / (n(Side) - nPrev(Side)) + 1
 WRITE Side << 1 + Dir << 4 + v(Side), pt 'Save pt in EEPROM.
 DEBUG REP " "\(Side * 10 + 12), DEC Side, " ", DEC v(Side), ": ", DEC pt, " "
 v(Side) = v(Side) + 1 'Increment to next desired velocity.
 ELSE
 EXIT 'Done in this section.
 ENDIF
 ELSE
 EXIT 'Done with this side altogether.
 ENDIF
 LOOP
 NEXT

25 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

 pPulse = Pulse 'Previous pulse width is current pulse width.
 FOR Side = RIGHT TO LEFT 'Previous counts are current counts.
 nPrev(Side) = n(Side)
 NEXT
 NEXT
NEXT

END

'---------[Error routine]--

Error: 'Error condition detected. Waggle from side to side.
 FOR n = 1 TO 3
 FOR Dir = CCW TO CW
 FOR i = 1 TO 20
 FOR Side = RIGHT TO LEFT
 PULSOUT Motor + Side, NULL + ((Dir << 1 - 1) * (MAXPULS */ SCALE))
 NEXT
 PAUSE 20
 NEXT
 NEXT
 NEXT
 END

'---------[Encoder pulse counter]--

Counter:
 FOR Side = RIGHT TO LEFT 'Get initial encoder states & clear counts.
 Prev(Side) = INS.LOWBIT(Sense + Side)
 n(Side) = 0
 NEXT
 FOR i = 0 TO 255 '256 servo pulses.
 FOR Side = RIGHT TO LEFT
 New(Side) = INS.LOWBIT(Sense + Side) 'Get new servo states.
 IF (New(Side) <> Prev(Side)) THEN 'Different from previous state?
 Prev(Side) = New(Side) ' Yes: Save new state.
 n(Side) = n(Side) + 1 ' Increment edge count.
 ENDIF
 NEXT
 FOR Side = RIGHT TO LEFT 'Pulse both motors.
 PULSOUT Motor + Side, NULL + ((Dir << 1 - 1) * Pulse)
 NEXT
 PAUSE 20 'Delay between servo pulses.
 NEXT
 RETURN

'--------[DoMove]--

'Move RIGHT wheel by Dist(RIGHT) in direction Dir(RIGHT) and
'LEFT wheel by Dist(LEFT) in direction Dir(LEFT) at peak velocity Veloc,
'using ramping and RIGHT/LEFT coordination.

DoMove:

 'Initialize Counts TO Dist.
 'Save current encoder status.

 FOR Side = RIGHT TO LEFT
 Counts(Side) = Dist(Side)
 Prev(Side) = INS.LOWBIT(Sense + Side)
 NEXT

 'Do for as long as there are encoder counts remaining...

 DO WHILE (Counts(RIGHT) OR Counts(LEFT))

 'Get new encoder state for each wheel.
 'If it's changed, decrement that wheel's Count.

 FOR Side = RIGHT TO LEFT
 New(Side) = INS.LOWBIT(Sense + Side)
 IF (New(Side) <> Prev(Side) AND Counts(Side)) THEN
 Prev(Side) = New(Side)
 Counts(Side) = Counts(Side) - 1
 ENDIF
 NEXT

 'For each wheel decide whether and how much to pulse its servo.

 FOR Side = RIGHT TO LEFT
 Opp = ~ Side

 IF (Counts(Side) AND Counts(Side) * Dist(Opp) + (Dist(Side)) >= Counts(Opp) * Dist(Side) +
(Dist(Opp) >> 1)) THEN

 Pulse = (Veloc MIN 3) MAX ((Counts(Side) MIN Counts(Opp)) MAX ((Dist(Side) - Counts(Side))
MIN (Dist(Opp) - Counts(Opp))) << 1 MIN 3)

 READ Side << 1 + (Dir(Side) ^ Side) << 4 + (Pulse * Dist(Side) / (Dist(Side) MIN Dist(Opp)) +
1 MAX 15), Pulse
 PULSOUT Motor + Side, NULL - ((Dir(Side) ^ Opp << 1 - 1) * Pulse)
 ENDIF
 NEXT

26 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

 'Pause between pulses.

 PAUSE 5
 LOOP
 RETURN

Coordinated Motion

The BASIC Stamp program described here provides coordinated, encoder-guided motion that can
best be described as proactive. This means that you can tell the Boe-Bot what turns to make and how
far to travel, and it’ll go there. This stands in contrast with a reactive driver program which will
simply monitor the encoders to keep track of where the Boe-Bot is. Each has its place in the grand
scheme of navigation. And this is not to say that a proactive program cannot be made somewhat
reactive as well. Even while the motion subroutine is showing off its coordination skills, it can still
monitor the external environment for unexpected situations like obstacles and alert the main program
accordingly. The astute programmer should have no difficulty modifying these routines for his/her
own use.

The program presented here builds upon all the theory we’ve covered up to this point, as well as upon
the calibration parameters obtained by the previous program. There are two main user-callable
subroutines, Turn and Move. They do what their names suggest, and each uses the same byte
variable, Arg, and nibble argument, Veloc, as its parameters.

Turn causes the Boe-Bot to rotate in place by the amount of Arg, a signed value ranging from –128
to 128, given in whole brads. Veloc can range from 0 to 15 and determines the peak velocity at which
the wheel turning the furthest can attain. The following sequence, for example, will cause the Boe-
Bot to turn left by 90 degrees (64 brads) at half speed:

Arg = 64
Veloc = 8
GOSUB Turn

That’s all there is to it? Well, yes and no. As we saw previously, it may not be possible for the Boe-
Bot to turn precisely to the angle we request, due to the coarseness of the encoders. But Turn will get
as close as it can, plus keep track of the difference between the angle requested and the angle
obtained. This difference is constantly maintained by the signed word variable DirErr, the directional
error. DirErr.HIGHBYTE is the integer part of the error, and DirErr.LOWBYTE is the fractional
part. So, as a whole, it is accurate to 1/256th of a brad – that is, assuming the Boe-Bot’s angle
calibration is accurate.

The calibration constants are two: FULLROT and BRDSPER. FULLROT expresses the number of
encoder pulses in one 256-brad turn, again as a whole number in the high byte, and a fraction in the
low byte. It will be close to 50 for the Boe-Bot, i.e. $3200 in hexadecimal. BRDSPER is the number
of brads rotation per encoder pulse – again a whole number and a fraction. It can be calculated on a
hand calculator as $100000 / FULLROT, or 1048676 / FULLROT in decimal. Because the Version
2.5 tokenizer doesn’t yet support 32-bit arithmetic in its constant expressions, it’s always necessary to
carry out this computation externally and enter the result in the program by hand. FULLROT itself
needs to be determined by experiment. More on this later.

When Turn is called, it first increments DirErr by the amount of the requested turn. It then
calculates the amount that each wheel should rotate – in integer encoder counts, remember – to reduce
this error as nearly as possible to zero. This way, if a previous turn or movement left the Boe-Bot a

27 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

little askew, a subsequent turn won’t compound the error by adding a new one, but rather attempt to
correct the first one.

In every case, Turn will come up with a whole number of encoder counts by which to turn. This
count has to be split between the two wheels, one moving forward, the other backward. If the total
count is an odd number, one wheel will have to turn one count farther than the other one. Once this
determination is made, Turn jumps to DoMove, which not only completes the requested motion, but
decrements DirErr by the actual amount of rotation, thus returning it to the difference between the
requested and actual direction the Boe-Bot is pointing.

Move commandeers the Boe-Bot’s forward and backward motion. It’s the subroutine that gets the
Boe-Bot where we want to go in the direction we think we’re pointing. It implements the mid-course
correction introduced in the theory section to land the Boe-Bot on the desired destination, even if it
wasn’t pointed at it precisely to begin with.

When Move is called, Arg should be set to a number between –128 and 127. Positive values will
move the Boe-Bot forward; negative values, backward. So the total move possible in one call to
Move is 127 or 128 eps (about 64 inches, or 162 cm). As with Turn, Veloc can be set to any value
from 0 to 15. (These values are offset by one, by the way: 0 represents 1/16 of maximum speed; 15
stands for 16/16 of maximum speed, i.e. actual maximum speed.) But because the minimum ramp
speed is fixed at three, ¼ of full speed is effectively the minimum speed at which the Boe-Bot can
travel.

The first thing Move must do when called is determine whether to make a beeline for its destination
or break the path into two tacks to attain the destination more accurately. This is easy to do:

1. Just assume it’s a two-legged journey, and calculate the length of the first leg.

2. If that length is zero, just move the entire distance.

3. If it’s non-zero, move that amount, and calculate the length of the second leg.

4. If that length is zero, we’re done.

5. If it’s non-zero, turn by one encoder count, then move by the amount of the second leg.

Both Turn and Move use DoMove to effect their desired movements. DoMove is the heart of the
whole shebang. It keeps track of angular error, performs the velocity ramping, monitors the encoders,
and makes sure the wheels stay coordinated during their movements. DoMove requires four
arguments: Dist(LEFT) and Dist(RIGHT), the two elements of an unsigned byte array, and
Dir(LEFT) and Dir(RIGHT), the two elements of a bit array. The Dist variables tell DoMove how
far to move each wheel. The Dir variables say which direction. Because Dist is unsigned, the
directions being indicated in separate bits, each wheel can move by an amount between -255 to 255
eps.

In operation, DoMove makes presumptive corrections to DirErr, then initializes an encoder
countdown array, Counts, to equal Dist, both LEFT and RIGHT. It then peeks at the encoders and
records their current states.

Next it begins a DO loop, which terminates only when both elements of the Counts array are zero. In
this loop, the first order of business is to see if the encoders have changed state. For each one that has,
its Counts element is decremented by one. Then an IF statement checks to see, for each wheel, if it’s
significantly ahead of the other one. If so, it’s skipped entirely; if not, it can be pulsed. The width of

28 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

that pulse, Pulse, is determined by the maximum speed, given by Veloc, as well as the current ramp
velocity – up or down. The result is then multiplied by the fraction Dist(Side) / Dist(Other side) if
Side is the slow side. The result of this is used as an index into one 16-byte section of the 64-byte
EEPROM calibration table to arrive at a pulse width. That pulse width is then applied to the motor.
When both Counts are zero, we’re done!

For those hackers who want to tinker with DoMove to make it more reactive to external stimulae –
possibly even aborting it early should some obstacle appear – there are some things to consider:

1. DirErr should either be updated at each step, or back-corrected by the amounts remaining in the
Counts array.

2. If a premature stop is necessary, try to ramp the motion down if possible. If this isn’t practical,
don’t exit the subroutine immediately, but wait until you’re sure all motion has ceased, all the
while keeping track of residual encoder counts.

Following is an annotated listing of the locomotion routines, with a main program designed to help
calibrate angular motion. All it does is make the Boe-Bot traverse a square path, 50 eps on a side, in a
counterclockwise fashion. A properly calibrated Boe-Bot running on a hard, flat surface will always
return to its starting point when executing this program. This point can be marked with a piece of tape
on the floor. If it overshoots, decrease the constant FULLROT a little, and recalculate BRDSPER. If
it comes up short, adjust the other way.

IMPORTANT: A dead-reckoned journey is no better than its first step. To ensure the utmost
success, remember the following:

1. Before placing the Boe-Bot on the floor, make sure its wheels are aligned such that both
photosensors are centered in their respective wheel holes. This will help to guarantee that one
encoder won’t pulse prematurely and throw the initial direction off.

2. Orient the Boe-Bot carefully when placing it on the floor.

3. Program a long pause at the beginning of the main program to provide a moment’s rest once your
hand moves away from the power switch or reset button.

Here’s the program. Some lines are too long to display in the available page width. Those are
indicated by a continuation character . This means that the next line of text should actually be keyed
as a continuation of the current line.

Demo Program (WHEEL_MOTION.bs2)
'{$STAMP BS2}
'{$PBASIC 2.5}

'This program consists of a set of subroutines for producing coordinated motion in the
'Boe-Bot wheels, through the use of encoder feedback.

'Addresses 0 - 63 of EEPROM are assumed to have calibration coefficients put
'there by the program Wheel_Calibrate.bs2.

'Written by Philip C. Pilgrim 30 March 2004

'Modified 6 April 2004:
' Corrected bug in move routine resulting from switching LEFT/RIGHT port assignments.
'Modified 12 April 2004:
' Added compile-time conditionals for NULL and SCALE
' Changed calibration constants based on results from Calibrate_All.exe.

'---------[Time constants for various BASIC Stamps]----------------------------

29 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

#IF ($Stamp = BS2) OR ($Stamp = BS2E) #THEN

 NULL CON 750 'Pulse width for 1.5ms pulse.
 SCALE CON $100 '256 * amount to scale pulses by.

#ELSE

 NULL CON 1875 'Pulse width for 1.5ms pulse.
 SCALE CON $280 '256 * amount to scale pulses by.

#ENDIF

'--------[Calibration Constants]---
'
' Adjust FULLROT for best precision on a closed course.
' Recompute BRDSPER as shown.
'
FULLROT CON $326D
BRDSPER CON $0514
SDIRINC CON $7F92

'---------[Other Global Constants]---

RIGHT CON 0 'Constants used as subscripts into bit arrays.
LEFT CON 1
FWD CON 0
BAK CON 1

SenseR PIN 10 'Lefthand encoder input.
SenseL PIN 11 'Righthand encoder input. (MUST be SenseL + 1.)

MotorR PIN 12 'Lefthand motor output.
MotorL PIN 13 'Righthand motor output. (MUST be MotorL + 1.)

Sense CON SenseR 'Base address for encoders.
Motor CON MotorR 'Base address for motors.

Arg VAR Byte 'Requested travel or turn amount.
Veloc VAR Nib 'Requested maximum velocity.

DirErr VAR Word 'Current directional error in brads and 1/256 brads.

Prev VAR Bit(2) 'Previous readings from encoders.
New VAR Bit(2) 'Current readings from encoders.
Dir VAR Bit(2) 'Wheel directions (FWD or BAK).
Side VAR Bit 'Side index (RIGHT or LEFT).
Opp VAR Bit 'Index to the other side (saves code).

Pulse VAR Byte 'Current unscaled, unnulled servo pulse value.

Dist VAR Byte(2) 'Distance for each wheel to travel.
Counts VAR Byte(2) 'Encoder pulse countdown for each wheel.
i VAR Byte 'General FOR loop index.

'=========[MAIN PROGRAM]===

PAUSE 2000
GOSUB Square
END

PAUSE 2000
GOSUB Octagon
PAUSE 2000
GOSUB Circle
PAUSE 2000
GOSUB Turn256
END

'=========[SUBROUTINES]==

'---------[Octagon]--

' Move Boe-bot along a counterclockwise, octagonal path, each leg of length 25.

Octagon:
 Veloc = 15 'Set velocity to maximum.
 FOR i = 1 TO 8 'Do for eight sides.
 Arg = 25: GOSUB Move 'Go straight for 25 eps.
 PAUSE 500
 Arg = 32: GOSUB Turn 'Turn left by 32 brads.
 PAUSE 500
 NEXT
 RETURN

'---------[Square]---

' Move Bot-Bot counterclockwise along a closed, square path, each leg of length 50.

Square:
 Veloc = 15 'Set velocity to maximum.
 FOR i = 1 TO 4 'Do for four sides.

30 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

 Arg = 50: GOSUB Move 'Move ahead by 50 eps.
 PAUSE 500
 Arg = 64: GOSUB Turn 'Turn left by 64 brads.
 PAUSE 500
 NEXT
 RETURN

'---------[Circle]--

' Move Boe-Bot counterclockwise in a complete circle about its left wheel.

Circle:
 Veloc = 15 'Set velocity to maximum.
 Dist(LEFT) = 0 'Left wheel stays still.
 'Right wheel goes forward by number of encoder counts
 '(rounded) in one full, 256 brad turn.
 Dist(RIGHT) = Dist(LEFT) + (FULLROT + $80 >> 8)
 Dir(RIGHT) = FWD 'Both directions are forward.
 Dir(LEFT) = FWD
 GOSUB DoMove 'Execute the move.
 RETURN

'---------[Turn256]--

'Spin the Boe-Bot on its axis one complete revolution.

Turn256:
 Veloc = 15 'Set velocity to maximum.
 FOR i = 1 TO 2 'Do in two, 128-brad segments.
 Arg = -128 'Turn 128 brads to the LEFT.
 GOSUB Turn 'Execute turn.
 NEXT
 RETURN

'---------[Move]---

'Move the Boe-Bot forward/backward by signed byte Arg at unsigned speed Veloc.

Move:
 Dir(LEFT) = Arg.BIT7 'Direction of motion given by sign bit of Arg.
 Dir(RIGHT) = Dir(LEFT) 'Both directions are the same.
 Arg = ABS(Arg << 8) >> 8 'Take the absolute value of Arg to get distance.
 'Compute length of first leg of tack.
 Dist(LEFT) = Arg * (16 - (ABS(DirErr) / (BRDSPER >> 4))) / 16
 IF (Dist(LEFT)) THEN 'Is it greater than zero?
 Dist(RIGHT) = Dist(LEFT) ' Yes: Right wheel goes the same distance.
 GOSUB DoMove ' Execute the move
 Arg = Arg - Dist(LEFT) ' Subtract the distance moved from Arg.
 IF (Arg) THEN ' Anything left?
 Dist(LEFT) = DirErr.BIT15 ' Yes: Correct direction by the sign of DirErr.
 Dist(RIGHT) = Dist(LEFT) ^ 1 ' Only one wheel moves forward.
 GOSUB DoMove ' Execute the move.
 ENDIF
 ENDIF
 IF (Arg) THEN 'Now back to Arg. Is it greater than zero?
 Dist(RIGHT) = Arg ' Yes: Set distances from it.
 Dist(LEFT) = Arg
 GOSUB DoMove ' Execute this leg of the move.
 ENDIF
 RETURN

'---------[Turn]---

'Turn the Boe-Bot on its axis by the amount in signed byte Arg at speed Veloc.
'Arg > 0 turns left; Arg < 0 turns right.

Turn:
 DirErr = DirErr + (Arg << 8) 'Adjust direction error by amount of turn.
 Arg = ABS(DirErr) ** FULLROT >> 7 + 1 >> 1 'Compute new Arg from new DirErr.
 Dir(RIGHT) = DirErr.BIT15 'Direction of turn is sign bit of DirrErr.
 Arg = ABS(Arg << 8) >> 8 'Amount of turn is absolute value of Arg.
 Dist(LEFT) = Arg >> 1 'Split turn amount evenly between both wheels.
 Dist(RIGHT) = Arg >> 1 + (Arg.BIT0) 'Round right wheel up if Arg is odd.
 Dir(LEFT) = ~ Dir(RIGHT) 'Left wheel goes opposite direction.
 GOTO DoMove 'Execute the motion.

'--------[DoMove]--

'Move right wheel by Dist(RIGHT) in direction Dir(RIGHT) and
'left wheel by Dist(LEFT) in direction Dir(LEFT) at peak velocity Veloc,
'using ramping and RIGHT/LEFT coordination.

DoMove:

 'Correct DirErr by effects of presumptive motion.
 'Initialize Counts TO Dist.
 'Save current encoder status.

 FOR Side = RIGHT TO LEFT
 DirErr = DirErr + ((Side ^ Dir(Side) << 1 - 1) * Dist(Side) * BRDSPER)
 Counts(Side) = Dist(Side)
 Prev(Side) = INS.LOWBIT(Sense + Side)

31 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

 NEXT

 'Do for as long as there are encoder counts remaining...

 DO WHILE (Counts(RIGHT) OR Counts(LEFT))

 'Get new encoder state for each wheel.
 'If it's changed, decrement that wheel's Count.

 FOR Side = RIGHT TO LEFT
 New(Side) = INS.LOWBIT(Sense + Side)
 IF (New(Side) <> Prev(Side) AND Counts(Side)) THEN
 Prev(Side) = New(Side)
 Counts(Side) = Counts(Side) - 1
 ENDIF
 NEXT

 'For each wheel decide whether and how much to pulse its servo.

 FOR Side = RIGHT TO LEFT
 Opp = ~ Side

 IF (Counts(Side) AND Counts(Side) * Dist(Opp) + (Dist(Side)) >= Counts(Opp) * Dist(Side) +
(Dist(Opp) >> 1)) THEN

 Pulse = (Veloc MIN 3) MAX ((Counts(Side) MIN Counts(Opp)) MAX ((Dist(Side) - Counts(Side)) MIN
(Dist(Opp) - Counts(Opp))) << 1 MIN 3)

 READ Side << 1 + (Dir(Side) ^ Side) << 4 + (Pulse * Dist(Side) / (Dist(Side) MIN Dist(Opp)) +
1 MAX 15), Pulse
 PULSOUT Motor + Side, NULL - ((Dir(Side) ^ Opp << 1 - 1) * Pulse)
 ENDIF
 NEXT

 'Pause between pulses.

 PAUSE 5
 LOOP
 RETURN

Wheel Odometry

The BASIC Stamp program presented here uses the encoders to keep track of the Boe-Bot’s position
and direction. It also records the high bytes of the x and y position coordinates in the Stamp’s
EEPROM for later retrieval.

What the program does when it starts depends on how many times in rapid succession the reset button
was pressed. If just once, it dumps the positions recorded in EEPROM to the DEBUG port. If twice, it
begins a sequence of moves roughly describing a clover- or petal-shaped trajectory. You can view the
recorded trajectory graphically using the PC host program botplot.exe downloadable from
www.parallax.com. A typical display from botplot will look something like the one on the following
page. The center position is (128, 128), and the graph intervals are every ten units. The start is marked
with a green box; the end, with a red one. The sliders at the top control how much of the total path is
highlighted and where the highlighting begins. This is useful for unraveling complicated paths with
lots of overlaps.

The constants SDIRINC and SPOSINC are calibration constants. SDIRINC can be obtained from
Calibrate_All.exe and tells the program how much the Boe-Bot turns after one encoder pulse from
one wheel. It is the value sin(δδδδ) discussed in the theory section, scaled up by 218 (262144). SPOSINC
tells the program how much the center of the Boe-Bot moves forward after one encoder pulse from
each wheel. This can be in inches, centimeters, or some other unit with a similar order of magnitude.
A value of 256 corresponds to ½ inch of travel. 256 * 2.54 cm/inch = 650 corresponds to the same
distance in centimeters.

XINIT and YINIT are the starting x and y coordinates. The starting direction is always assumed to
be north (towards +y).

32 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

RECINT is the recording interval. It determines whether and how often the x and y coordinates are
written to the Stamp’s EEPROM. Only the HIGHBYTE is written, which usually corresponds to
whole units with the fractional part lopped off (depending on the value of SPOSINC). RECINT can
range from 0 (don’t record) to 15 (record on every 15th encoder pulse).

This program, like the other examples, assumes that the right-hand motor and encoder are on the
lower-numbered port of each port pair. The constants SenseR, SenseL, MotorR, and MotorL
determine which ports are used.

33 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

All of the Boe-Bot’s nav state info is contained in nine bytes of variable space. Four Word variables,
Xpos, Ypos, Xdir, and Ydir track the bot’s position and direction. Eight Bit variables keep track of
previous encoder readings (so changes can be detected), the direction each wheel is turning (set prior
to each movement), bookkeeping bits for grouping movements into pairs (the anti-crabbing stuff), a
bit for telling the program whether the bot moved in the last interval, and an index bit for selecting
which wheel to process.

A call to the subroutine Initialize at the program’s beginning gets everything set up. The meat of the
odometry is the subroutine ChkEnc. It requires that Dir(LEFT) and Dir(RIGHT) each be set to
FWD or BAK so it knows which direction each wheel is turning. ChkEnc just needs to be called
often enough while driving the motors to ensure that all encoder edges are caught. Calling it between
servo pulses will more than suffice for this purpose. It checks the encoders, updates the nav state info
for each detected pulse, and records the bot’s position in EEPROM at appropriate intervals.

WaitEnc should always be called at the end of a motion sequence to account for any stray encoder
pulses that occur once the motors cease being driven. It will return when all motion has stopped.

Demo Program (WHEEL_ODOMETRY.bs2)
'{$STAMP BS2}
'{$PBASIC 2.5}

'--
' Sample program to keep track of position and direction using wheel encoders.
'--

'Written by Philip C. Pilgrim 30 March 2004

'Modified 12 April 2004:
' Changed calibration constants based on results from Calibrate_All.exe.
'Modified 13 April 2004:
' Changed from -128 to 127 coordinate system centered at (0,0) to a 0 to 255
' system centered at (128, 128).
' Changed startup to depend on number of reset button presses instead of a
' debug port input.

'---------[Calibration Constants]--

SDIRINC CON $7F92 'Sin(delta) factor by which to modify the angle vectors for each
 'encoder pulse. Increase this number if Boe-Bot turns
 'more than odometer says it does. Decrease, if less.
 'Sin(delta) = SDIRINC / 262144.)

SPOSINC CON 650 'Sin(delta) factor to compute distance for each encoder pulse.
 '256 corresponds to 0.5" travel per two-wheel pulse.
 'For centimeters, start with 650 to get 1.27cm of travel per
 'two-wheel pulse. (SPOSINC = W * SDIRINC / 512, where W
 'is the effective distance between wheels in the desired units.)

'---------[Initialization Constants]---

XINIT CON 128 'Initial X position (byte) in whole units.
YINIT CON 128 'Initial Y position (byte) in whole units.
 'Initial direction is always assumed to be towards +Y (north).

RECINT CON 4 'Position record interval:
 ' 0 = don't record.
 ' 1 - 15 = record every 1 - 15 encoder pulses.

'---------[Other Constants]--

MAXADDR CON $3FF 'Maximum writable EEPROM address.

RIGHT CON 0 'Constants used as subscripts into bit arrays.
LEFT CON 1
FWD CON 0
BAK CON 1

SenseR PIN 10 'Righthand encoder input.
SenseL PIN 11 'Lefthand encoder input. (MUST be SenseR + 1.)

MotorR PIN 12 'Righthand motor output.
MotorL PIN 13 'Lefthand motor output. (MUST be MotorR + 1.)

Sense CON SenseR 'Base address for encoders.
Motor CON MotorR 'Base address for motors.

34 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

'---------[Variables]--

Prev VAR Bit(2) 'Previous readings from encoders.
Dir VAR Bit(2) 'Wheel directions (FWD or BAK).
LastSide VAR Bit 'Last side to get a pulse (LEFT or RIGHT).
NewSeq VAR Bit 'Set if last movement started a new LR or RL sequence.
Side VAR Bit 'Side index (LEFT or RIGHT).
Moved VAR Bit 'Indicates motion since last checking.

Xpos VAR Word 'X location of the Boe-Bot's center.
X VAR Xpos.HIGHBYTE 'Integer portion of Xpos. Low byte is fraction.
Ypos VAR Word 'Y location of the Boe-Bot's center.
Y VAR Ypos.HIGHBYTE 'Integer portion of Ypos. Low byte is fraction.
Xdir VAR Word 'X component of the Boe-Bot's direction.
Ydir VAR Word 'Y component of the Boe-Bot's direction.
MemPtr VAR Word 'Pointer into EEPROM for position recording.
MemCtr VAR MemPtr.HIGHNIB 'Countdown for record interval.

i VAR Word 'Scratch variables...
n VAR Byte
pulse VAR Word

'---------[Program begins here.]---

DATA @64, 0 'Initialize reset button count on upload.

PAUSE 10 'Debounce reset button.
READ 64, i 'Read reset button count - 1.
WRITE 64, i + 1 'Increment count and save back to EEPROM.
PAUSE 1000 'Wait one second.
WRITE 64, 0 'If not reset again during wait, reinitialize count.
SELECT i 'Act based on reset button count - 1.

'---------[Start here on one reset button press.]------------------------------

 CASE 0:

 DumpData: 'Dump stored data to DEBUG port.

 PAUSE 1000 'Wait one second for host program to get ready.
 DEBUG "NEW", CR 'Send start message.
 MemPtr = 65 'Start reading from address 64.
 DO 'Main reading loop...
 READ MemPtr, X 'Read 2's complement X and Y byte values.
 READ MemPtr + 1, Y
 DEBUG "X:", DEC X, ",", "Y:", DEC Y, CR 'Output one line of data.
 MemPtr = MemPtr + 2 'Increment memory pointer.
 Xpos.LOWBYTE = X
 READ MemPtr, X 'Peek at next X value.
 LOOP UNTIL (X ^ Xpos.LOWBYTE = $80) 'When next X differs from previous by
 '$80, we're done.
 DEBUG "END", CR 'Send end message.
 END 'That's all.

'---------[Start here on two reset button presses.]----------------------------

 CASE 1:

 MainProg: 'Begin sample motion profile.

 GOSUB Initialize 'Do encoder initialization.

 FOR n = 1 TO 9 'This will be a nine-leaf clover.
 FOR pulse = 700 TO 735 STEP 35 '700 for straighter areas, 730 for turns.
 FOR i = 1 TO 100 'Proceed with 100 servo pulses.
 Dir(LEFT) = FWD 'Must set direction values so encoder
 Dir(RIGHT) = FWD 'routine will know.
 PULSOUT MotorL, 850 'Pulse the servos.
 PULSOUT MotorR, pulse
 GOSUB ChkEnc 'Update the encoders.
 PAUSE 20 'Wait 20 ms.
 NEXT 'Next servo pulse.
 NEXT 'Next pulse value.
 NEXT 'Next leaf in clover.

 GOSUB WaitEnc 'Wait for all motion to cease.
 END 'We're done.

ENDSELECT
end

'---------[Subroutines]--

Initialize: 'Do encoder initialization.

 Xdir = 0 'Set direction to +Y.
 Ydir = $4000
 Xpos = XINIT << 8 'Set positions from constants.
 Ypos = YINIT << 8
 IF (RECINT) THEN 'Are we going to record positions?
 WRITE 65, X ' Yes: Record initial positions now.
 WRITE 66, Y

35 Parallax, Inc. • Applying the Boe-Bot Digital Encoder Kit (#28107) 04/11/2004

 MemPtr = RECINT << 12 + 67 ' Initialize MemPtr and MemCtr.
 ENDIF
 FOR Side = RIGHT TO LEFT 'Read initial encoder values.
 Prev(Side) = INS.LOWBIT(Sense + Side)
 NEXT
 RETURN 'Done.

'--

WaitEnc: 'Track encoders until motion ceases.

 FOR i = 1 TO 30 'Need 30 motionless intervals to be sure.
 GOSUB ChkEnc 'Check the encoder.
 IF (Moved) THEN i = 0 'If the bot moved, reset counter and start over.
 NEXT
 RETURN 'No motion for 30 steps. It's stopped.

'--

ChkEnc: 'Update and record position from encoders.
 'Just call it often enough to catch all the
 'changes.
 Moved = 0 'Initialize to no detected movement.
 FOR Side = RIGHT TO LEFT 'For both encoders...
 IF (INS.LOWBIT(Sense + Side) ^ Prev(Side)) THEN 'Encoder different from prior value?

 Prev(Side) = ~ Prev(Side) ' Yes: Update with new value.
 Moved = 1 ' Indicate that we've moved.
 NewSeq = ~ (Side ^ Dir(Side) ^ LastSide & NewSeq) 'Start a new LR or RL sequence unless
 ' different side moved last and that was
 ' the start of a new sequence.
 LastSide = Side ^ Dir(Side) ' Update last side to move.
 IF (NewSeq) THEN DoPos ' New sequence starts with position.
 ' 2nd half of same sequence undoes angle first.

 DoAng: ' Angle change.

 Ydir = Ydir - ((Dir(Side) ^ Side ^ Xdir.BIT15 << 1 - 1) * (ABS(Xdir) ** SDIRINC >> 3))
 Xdir = Xdir + ((Dir(Side) ^ Side ^ Ydir.BIT15 << 1 - 1) * (ABS(Ydir) ** SDIRINC >> 2))
 Ydir = Ydir - ((Dir(Side) ^ Side ^ Xdir.BIT15 << 1 - 1) * (ABS(Xdir) ** SDIRINC >> 3))
 IF (NewSeq) THEN DoNext

 DoPos: ' Position change.

 Xpos = Xpos - ((Dir(Side) ^ Xdir.BIT15 << 1 - 1) * (ABS(Xdir) ** SPOSINC))
 Ypos = Ypos - ((Dir(Side) ^ Ydir.BIT15 << 1 - 1) * (ABS(Ydir) ** SPOSINC))
 IF (NewSeq) THEN DoAng

 DoNext:

 ENDIF
 NEXT

 IF (Moved AND RECINT > 0) THEN 'If bot moved and we're recording it...
 MemCtr = MemCtr - 1 'Decrement counter (i.e. MemPtr.HIGHBYTE).
 IF (MemPtr < MAXADDR - 2) THEN 'If counter is zero AND address is low enough...
 WRITE MemPtr, X 'Write X and Y to EEPROM.
 WRITE MemPtr + 1, Y
 WRITE MemPtr + 2, X ^ $80 'Add an impossible next X for end-of-file.
 MemPtr = RECINT << 12 + MemPtr + 2 'Reset counter and update pointer.
 ENDIF
 ENDIF
 RETURN 'Over and out.

