

W5100E01-AVR User’s Manual
(Version 1.1.0)

© 2007 WIZnet Co., Ltd. All Rights Reserved.

☞ For more information, visit our website at http://www.wiznet.co.kr

http://www.wiznet.co.kr/

W5100E01-AVR User‟s Manual ii

Document History Information

Revision Data Description

Ver. 1.0.0 Febrary 1, 2007 Original Document

Ver. 1.1.0 June 17, 2013

The software CD is not provide anymore.
For more software contents, please visit our website.
(www.wiznet.co.kr)
modified the comment about S/W CD.
(CH 1.1, 4.3.1, 4.3.2, 4.4.4, 4.5.1, 4.5.2)

http://www.wiznet.co.kr/

W5100E01-AVR User‟s Manual iii

WIZnet’s Online Technical Support

If you have something to ask about WIZnet Products, Write down your question on

Q&A Board in WIZnet website (www.wiznet.co.kr). WIZnet Engineer will give an answer

as soon as possible.

CClliicckk

http://www.wiznet.co.kr/

W5100E01-AVR User‟s Manual iv

COPYRIGHT NOTICE

Copyright 2007 WIZnet, Ltd. All Rights Reserved.

Technical Support: support@wiznet.co.kr

Sales & Distribution: sales@wiznet.co.kr

General Information: info@wiznet.co.kr

For more information, visit our website at http://www.wiznet.co.kr

mailto:support@wiznet.co.kr
mailto:sales@wiznet.co.kr
mailto:info@wiznet.co.kr
http://www.wiznet.co.kr/

W5100E01-AVR User‟s Manual v

Table of Contents

1. Overview .. 1

1.1. Package.. 1

1.2. Feature ... 2

1.2.1. H/W Features ...2

1.2.2. F/W Feature ..2

2. Getting Started ... 3

2.1. System Configuration ... 3

2.1.1. EVB B/D Layout & Configuration ..3

2.2. PC Programs Install ... 4

2.2.1. Development Program Install ...4

2.2.2. EVB B/D Test PC Program Install ...4

2.3. Quick Start .. 5

2.4. EVB B/D Test .. 6

2.4.1. Manage Program ..7

2.4.2. EVB B/D Test Applications .. 13

2.5. Troubleshooting Guide ... 18

2.5.1. Ping ... 18

2.5.2. Misc. .. 18

3. Programmer‟s Guide.. 19

3.1. Memory Map .. 19

3.1.1. Code & Data Memory Map .. 19

3.1.2. AVR Internal EEPROM MAP ... 20

3.2. EVB B/D Firmware ... 26

3.2.1. Sources .. 27

3.2.2. How to Compile .. 28

3.2.3. How to download .. 29

3.2.4. EVB B/D‟s main() .. 29

3.2.5. Manage Program .. 33

3.2.6. Applications ... 49

4. Hardware Designer‟s Guide .. 92

4.1. Block Diagram .. 92

4.2. Block Description .. 93

4.2.1. PM-A1 .. 93

W5100E01-AVR User‟s Manual vi

4.2.2. LCD ... 97

4.2.3. PAL.. 98

4.2.4. SRAM .. 98

4.2.5. RS232 Port.. 98

4.2.6. Expanded Board Interface .. 98

4.2.7. Power Regulator ... 100

4.2.8. 3.3V Power On System Reset ... 100

4.3. Schematic ... 101

4.3.1. W5100E01-AVR ... 101

4.3.2. PM-A1 .. 101

4.4. PAL ... 102

4.4.1. IO Define .. 102

4.4.2. External SRAM Area .. 103

4.4.3. LCD Area .. 103

4.4.4. W5100 Area... 104

4.5. Parts List ... 106

4.5.1. W5100E01-AVR Parts List .. 106

4.5.2. PM-A1 Parts List ... 106

4.6. Physical Specification ... 107

4.6.1. Power Consumption .. 107

W5100E01-AVR User‟s Manual vii

Figures
<FIG 2.1 : EVB B/D JUMPER SETTING> ... 3

<FIG 2.2 : JP3 JUMPER SETTING > ... 3

<FIG 2.3 : EVB B/D TEXT LCD DISPLAY > ... 5

<FIG 2.4 : OUTPUT OF TERMINAL PROGRAM> .. 6

<FIG 2.5 : EVB B/D PING REPLY TEST > .. 6

<FIG 2.6 : MANAGE PROGRAM EXECUTION > ... 7

<FIG 2.7 : NETWORK CONFIG > ... 8

<FIG 2.8 : SOURCE IP ADDRESS SETUP EXAMPLE> .. 9

<FIG 2.9 : MAC ADDRESS SETUP EXAMPLE> ... 9

<FIG 2.10 : MENU OF CHANNEL CONFIG> .. 10

<FIG 2.11 : LOOPBACK TCP CLIENT APPLICATION SETTING EXAMPLE> ... 11

<FIG 2.12 : USAGE OF PING APPLICATION > ... 12

<FIG 2.13 : PING APPLICATION TEST> .. 13

<FIG 2.14 : DHCP CLIENT TEST> ... 14

<FIG 2.15 : LOOPBACK TCP SERVER TEST> ... 15

<FIG 2.16 : LOOPBACK TCP CLIENT>... 15

<FIG 2.17 : LOOPBACK UDP TEST> ... 16

<FIG 2.18 : WEB SERVER TEST> .. 16

<FIG 2.19 : DEFAULT WEB PAGE OF EVB B/D> ... 17

<FIG 2.20 : WEB PAGE OF EVB B/D CONTROL> ... 17

<FIG 3.1: EVB B/D MEMORY MAP> ... 19

<FIG 3.2: AVR INTERNAL EEPROM MAP> .. 20

<FIG 3.3: EVB B/D’S MAIN()> .. 32

<FIG 3.4: CHECK_MANAGE()> ... 33

<FIG 3.5: MANAGE_CONFIG()> .. 34

<FIG 3.6: MANAGE_NETWORK()> .. 36

<FIG 3.7: MANAGE_CHANNEL()> ... 38

<FIG 3.8: PING_REQUEST()> ... 40

<FIG 3.9: PING_REQUEST() – CONTINUE> .. 41

<FIG 3.10: ICMP MESSAGE VS PING MESSAGE> ... 42

<FIG 3.11: PING()> ... 45

<FIG 3.12: DISPLAYPINGSTATISTICS()> .. 46

<FIG 3.13: SENDPINGREPLY()> .. 47

< FIG 3.14 : LOOPBACK_TCPS() > ... 49

W5100E01-AVR User‟s Manual viii

<FIG 3.15: LOOPBACK_TCPC()> .. 52

<FIG 3.16: LOOPBACK_UDP()> .. 53

<FIG 3.17: HTTP MESSAGE FLOW> ... 55

<FIG 3.18: WEB_SERVER()> .. 58

<FIG 3.19: PROC_HTTP()> .. 59

<FIG 3.20: PARSE_HTTP_REQUEST()>.. 61

<FIG 3.21: FIND_HTTP_URI_TYPE()> .. 62

<FIG 3.22: GET_HTTP_URI_NAME() & GET_HTTP_PARSE_VALUE()> ... 62

<FIG 3.23: NETCONF.CGI PROCESSING> ... 63

<FIG 3.24: LCDNLED.CGI PROCESSING>.. 64

<FIG 3.25: DHCP MESSAGE FLOW> .. 66

<FIG 3.26: DHCP MESSAGE FORMAT> .. 67

<FIG 3.27: DHCP MESSAGE‟S OPTION FIELD FORMAT> ... 68

<FIG 3.28: INIT_DHCP_CLIENT()> ... 69

<FIG 3.29: GETIP_DHCPS()> .. 70

<FIG 3.30: DHCP MESSAGE FLOW BY DHCP CLIENT STATE> ... 72

<FIG 3.31: CHECK_DHCP_STATE()> .. 73

<FIG 3.32: PARSE_DHCPMSG() & CHECK_DHCP_TIMEOUT()>... 74

<FIG 3.33: DOMAIN NAME SYSTEM STRUCTURE & DNS MESSAGE FLOW> ... 76

<FIG 3.34: DNS MESSAGE FORMAT> ... 77

<FIG 3.35: HEADER SECTION FORMAT> ... 77

<FIG 3.36: QUESTION SECTION FORMAT> ... 77

<FIG 3.37: RECODE RESOURCES FORMAT>... 78

<FIG 3.38: GETHOSTBYADDR() & GETHOSTBYNAME()> .. 80

<FIG 3.39: DNS_QUERY()> .. 81

<FIG 3.40: DNS_MAKEQUERY()> ... 82

<FIG 3.41: EXAMPLE OF QNAME FIELD TRANSFORMATION OF QUESTION SECTION > 83

<FIG 3.42: DNS_PARSE_RESPONSE()> ... 85

<FIG 3.43: DNS_PARSE_QUESTION() & DNS_ANSWER()> .. 87

<FIG 3.44: PARSE_NAME()> .. 88

<FIG 3.45: DNS MESSAGE COMPRESSION SCHEME> ... 89

<FIG 4.1: EVB B/D BLOCK DIAGRAM> ... 92

<FIG 4.2: PM-A1 MODULE DIMENSION>.. 93

W5100E01-AVR User‟s Manual ix

Tables
<TABLE 1-1: LIST OF ITEMS CONTAINED IN THE EVB B/D> .. 1

<TABLE 1-2 : CONTENTS OF SOFTWARE> ... 1

<TABLE 2-1 : TERMINAL PROPERTIES SETTING> .. 5

<TABLE 2-2 : EVB B/D DEFAULT NETWORK INFORMATION> .. 7

<TABLE 2-3 : MENU OF NETWORK CONFIG> ... 8

<TABLE 2-4 : EVB B/D DEFAULT CHANNEL INFORMATION> ... 9

<TABLE 2-5 : MENU OF CHANNEL CONFIG> .. 10

<TABLE 2-6 : W5100 CHANNEL APPLICATION TYPE> ... 10

< TABLE 2-7 APPLICATION DEFAULT VALUE > .. 11

<TABLE 3-1: DEVICE MAP DEFINITION> ... 20

<TABLE 3-2: AVR INTERNAL EEPROM MAP DEFINITION> ... 21

<TABLE 3-3: SYSTEM INFORMATION> .. 22

<TABLE 3-4: SYSINFO DATA TYPE DEFINITION> ... 22

<TABLE 3-5: SYSTEM INFORMATION ACCESS FUNCTIONS> ... 22

<TABLE 3-6: NETWORK INFORMATION> .. 23

<TABLE 3-7: NETCONF DATA TYPE DEFINITION> ... 23

<TABLE 3-8: NETWORK INFORMATION ACCESS FUNCTIONS> .. 23

<TABLE 3-9: CHANNEL INFORMATION> .. 24

<TABLE 3-10: CHANNEL APPLICATION TYPE> ... 24

<TABLE 3-11: CHCONF DATA TYPE DEFINITION> ... 25

<TABLE 3-12: CHANNEL INFORMATION ACCESS FUNCTION> ... 25

<TABLE 3-13: EVB B/D SOURCES>.. 27

< TABLE 3-14 : W5100‟S DEFINE OPTION (TYPES.H) > ... 29

<TABLE 3-15: REFERENCE FUNCTIONS IN EVB B/D‟S MAIN()> ... 31

<TABLE 3-16: CALLER FUNCTION AT MANAGE PROGRAM > ... 35

<TABLE 3-17: REFERENCE FUNCTIONS IN MANAGE_CONFIG()> .. 37

<TABLE 3-18: CONSTRAINT BY APPLICATION TYPES> .. 38

< TABLE 3-19: REFERENCE FUNCTIONS IN MANAGE_CHANNEL() > .. 39

<TABLE 3-20: PINGMSG DATA TYPE DEFINITION> ... 43

<TABLE 3-21: PINGLOG DATA TYPE DEFINITION> .. 43

<TABLE 3-22: REFERENCE FUNCTIONS IN PING_REQUEST()> ... 48

<TABLE 3-23: REFERENCE FUNCTIONS IN LOOPBACK_TCPS()> .. 50

<TABLE 3-24: REFERENCE FUNCTIONS IN LOOPBACK_TCPC()> .. 52

<TABLE 3-25: REFERENCE FUNCTIONS IN LOOPBACK_UDP()> .. 54

W5100E01-AVR User‟s Manual x

<TABLE 3-26: WEB BROWSER‟S HTTP REQUEST OPERATION PROCEDURE > 55

<TABLE 3-27: HTTP MESSAGE FORMAT> .. 56

<TABLE 3-28: HTTP MESSAGE BETWEEN EVB B/D AND WEB BROWSER> 57

<TABLE 3-29: SYSTEM ENVIRONMENT VARIABLES USAGE AT “EVBCTRL.HTML” > 60

<TABLE 3-30: “ST_HTTP_REQUEST” DATA> .. 61

<TABLE 3-31: REFERENCE FUNCTIONS IN WEB_SERVER()> .. 65

<TABLE 3-32: DHCP MESSAGE DATA TYPE> ... 67

<TABLE 3-33: DHCP MESSAGE OPTION CODE DEFINITION> .. 68

<TABLE 3-34: DHCP CLIENT STATE & TIMEOUT DEFINITION>... 71

<TABLE 3-35: DHCP MESSAGE FLAG FIELD SETUP> .. 71

<TABLE 3-36: REFERENCE FUNCTIONS IN DHCP CLIENT> ... 75

<TABLE 3-37: DNS MESSAGE DATA TYPE>.. 79

<TABLE 3-38: QUERY TYPE DEFINITION AT DNS_QUERY()> ... 79

<TABLE 3-39: CONSTANTS AND MACRO USED IN HEADER SECTION> ... 83

<TABLE 3-40 : CONSTANTS DEFINITION AT QTYPE & QCLASS FIELD> .. 84

<TABLE 3-41 : CONSTANT DEFINITION AT HEADER SECTION‟S RCODE FIELD> 86

<TABLE 3-42 : REFERENCE FUNCTIONS IN DNS CLIENT > .. 91

<TABLE 4-1: PM-A1 MODULE PIN DESCRIPTION> .. 94

<TABLE 4-2: ISP PIN DESCRIPTION> .. 96

<TABLE 4-3: LCD PIN DESCRIPTION> .. 97

<TABLE 4-4: EXPANDED BOARD INTERFACE PIN DESCRIPTION> ... 98

< TABLE 4-5 EVB B/D POWER CONSUMPTION > .. 107

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

1

1. Overview

W5100E01-AVR is W5100 Evaluation B/D for AVR developers.

1.1. Package

When purchasing W5100E01-AVR B/D, please make sure you have all the following contents.

<Table 1-1: List of Items Contained in the EVB B/D>

 Item Quantity

EVB B/D

W5100E01-AVR Main Board 1

PM-A1 MCU Module

(Plugged In W5100E01-AVR)
1

Power Adaptor (DC5V / 2A) 1

Accessory

AVR ISP Internal Flash Programming Tool Option

UTP Cable 1

Serial Cable 1

ISP Gender Type I Option

<Table 1-2 : Contents of Software>

Directory Contents

W5100E01-

AVR

DOCs Manual User‟s Manual

Datasheet All sorts of Datasheet

Application Note AVR Tool Gudie

ISP Gender Guide

HW Schematics All sorts of schematics

Part List All sorts of Part List

PAL Logic Source & JED File

SW Firmware EVB B/D Firmware

PC Utility All sorts of Tool Program

W5100

 The contents of Software could be changed by version. Please check the official website of WIZnet.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

2

1.2. Feature

1.2.1. H/W Features

W5100E01-AVR B/D is composed of 2 type B/Ds

 PM-A1

- MCU : ATmega128, 8MHz

- RAM : 32KB SRAM (External)

- ROM : 128KB Flash (Atmega128 Internal Flash)

- ICE I/F : JTAG, ISP Support

 W5100E01-AVR

- Power : DC5V, 2A Adaptor

- UART : Two 232 Serial Port, (default 57600 Baud Rate)

- LCD Display : 16 X 2 Text LCD

- PAL : Address Decoder

- W5100 : Hardwired TCP/IP Chip(embedded PHY chip)

- MagJack : RD1-125BAG1A (UDE) , Integrated Transformer(1:1)

Link & ACT & FDX LEDs

1.2.2. F/W Feature

The F/W of EVB B/D is made up of two parts.

 Manager mode

- Network Config : MAC, Source IP, G/W IP, S/N, DNS IP Setup

- Channel Config : W5100 Test Application Setup for each channel

- Ping Test : Ping Request Test with DNS

 Application mode

- Loopback TCP Server : TCP Server Mode Test Application

- Loopback TCP Client : TCP Client Mode Test Application

- Loopback UDP : UDP Test Application

- Web Server : Web Server Test Application

- DHCP Client : Dynamic Network Config using DHCP Server

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

3

2. Getting Started

2.1. System Configuration

2.1.1. EVB B/D Layout & Configuration

For testing the functions of the EVB B/D and developing applications, the EVB B/D should be configured as

shown below. First, the EVB B/D is connected to the PC using the crossed UTP Cable (for data

transmission) and the Serial Cable (for monitoring). Second, the dip switch and jumper should be set as

below;

<Fig 2.1 : EVB B/D Jumper Setting>

① SPI Enable : J3

 For interfacing W5100 with MCU through SPI mode, the pin of 2 and 3 of JP3 should go short. In case

that SPI mode is not used, the pin of 1 and 2 should be shorted.

1 2 3[BUS] [SPI]

<Fig 2.2 : JP3 Jumper Setting >

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

4

2.2. PC Programs Install

2.2.1. Development Program Install

Please refer to “AVR Tool Guide Vx.x.pdf” for more information.

2.2.1.1. Compile Tool Chain

For installation and usage of WinAVR, refer to the related manual.

Firmware of EVB B/D is currently using AVR GCC Version 3.4.6 Compiler and can be changed with compiler

version upgrade.

2.2.1.2. ICE Programs

EVB B/D supports JTAG & ISP ICE for development and debugging. For ISP Program, “AVRStudio” program

is used. Please refer to “AVR Tool Guide Vx.x.pdf” for installation and usage of “AVR Studio” and “ISP

GENDER User’s Guide Vx.x.pdf” for usage of „ISP GENDER‟.

2.2.1.3. ROM File Maker Program

ROM File Maker Program is a utility program that provides convenience in using simple „ROM File System‟

for EVB B/D. The reason that ROM File Maker Program is used in EVB B/D is to access Web Pages for Web

Server Test Application as „ROM File System‟. Refer to “ROM File Maker Manual Vx.x.pdf” for further

instruction on installation and ROM File Maker Program

2.2.2. EVB B/D Test PC Program Install

2.2.2.1. Loopback Test Program (AX1) Install

Loopback Test Program (referred to as “AX1” from here on) is a program to evaluate the performance of

W5100 and does the Loopback the file and packet data in connection with EVB B/D channel applications

such as Loopback TCP Server/Client and Loopback UDP. Please refer to “AX1 Manual Vx.x.pdf” for

installation and usage.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

5

2.3. Quick Start

After the confirming the Package of EVB B/D, test EVB B/D in the order shown below.

① Confirm the testing environment. Refer to Chapter 2.1

 Connect test PC to EVB B/D using UTP cable directly.

 Connect test PC to EVB B/D using serial cable directly.

 Connect 5V power adaptor to EVB B/D

② Confirm the network information of Test PC as the following

Source IP Address : 192.168.0.3

Gateway IP Address : 192.168.0.1

Subnet Mask : 255.255.255.0

③ Install AX1 on Test PC. Refer to Chapter 2.2.2.1

④ After the execution of serial terminal program (like Hyperterminal), set up the properties as the

following.

<Table 2-1 : Terminal Properties Setting>

Properties Setting Value

Bits Per second(Baud Rate) 57600 bps

Data Bits 8 Bits

Stop Bits 1 Bit

Parity No

Flow Control None

 After the completion of terminal setup, connect to EVB B/D and wait.

⑤ Turn on the power switch(SW1) of EVB B/D

 Following items should be checked upon power on

- Check lighting on power LED(D2) of EVB B/D when powering on

- Check if LEDs of D3 and D4 blink three times by turns.

- Check if Text LCD display of EVB B/D outputs in the way shown in <Fig 2.3> and shown in <Fig

2.4> on the Terminal Program

<W5100E01 Vx.x>
 192.168.000.002

< MANAGE MODE > After about 7 seconds

<Fig 2.3 : EVB B/D Text LCD Display >

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

6

After about 7 seconds

<Fig 2.4 : Output of Terminal Program>

⑥ Execute Ping test with EVB B/D

<Fig 2.5 : EVB B/D Ping Reply Test >

⑦ Execute “AX1” program. Refer to “AX1 Manaul Vx.x.pdf”

⑧ Test the operation of “AX1” program with TCP Client. Refer to “AX1 Manaul Vx.x.pdf”

After setting the Server IP Address as “192.168.0.2” and port Number as “5000” by clicking

[TCP>>Connect] Menu, then click,[TCP>>Send] Menu or [Ts],[Tr],[] Icons.

⑨ Test the loopback with any file or packet between “AX1” Program and EVB B/D.

2.4. EVB B/D Test

The firmware of EVB B/D can be divided into Manage Program and EVB B/D Test Application.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

7

Manage Program performs system configuration to run EVB B/D, and EVB B/D Test Application is Network

Application Program for W5100 Test.

2.4.1. Manage Program

Manage Program is a program that is executed upon receiving character „M‟ or „m‟ from the terminal program

within 7 seconds when doing the manual reset of EVB B/D and EVB B/D power on. This program sets up the

channel application of W5100 to be tested, and perform certain ping request test with DNS server.

<Fig 2.6 : Manage Program Execution >

2.4.1.1. Network Configuration

It selects Network Information that is used in EVB B/D. When choosing „1‟ at terminal Program of <Fig 2.6>,

Network Information of EVB B/D can be set as desired. The default Network Information of EVB B/D is

shown in <Table 2-2>.

<Table 2-2 : EVB B/D Default Network Information>

Network Information Default Value

MAC Address 00.08.DC.00.00.00

Source IP Address 192.168.0.2

Gateway IP Address 192.168.0.1

Subnet Mask 255.255.255.0

DNS Server IP Address 0.0.0.0

If “Network Config” menu is selected on Manage Program, menu shown in <Fig 2.7> can be displayed and

each function is described in <Table 2-3>.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

8

<Fig 2.7 : Network Config >

<Table 2-3 : Menu of Network Config>

Menu Description

D : Display Config Display current Network Information

1 : Source IP Address Sets up Source IP Address

2 : Gateway IP Address Sets up Gateway IP Address

3 : Subnet Mask Sets up Subnet Mask

4 : DNS Server IP Sets up DNS Server IP Address

<Warning> DNS Server is information needed for “Ping Request”

test and transformation of Domain Name into IP address.

Therefore, it must be set up as Static IP Address.

„A‟ or „a‟ Sets up Memory Allocation – W5100 Memory Size

Register.(RMSR,TMSR)

Refer to “W5100 Datasheet.pdf“.

F : Factory Reset Initialization of the system with the default value.

Refer to <Table 2-2>

„M‟ or „m‟ Sets up MAC Address.

<Warning> This value is not changed when Factory Reset.

E : Exit Exit “Net Config”

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

9

<Fig 2.8> is an example of setting the Source IP of EVB B/D in Network Config

<Fig 2.8 : Source IP Address Setup Example>

<Fig 2.9> is an example of setting the MAC address of EVB B/D in Network Config

<Fig 2.9 : MAC address Setup Example>

2.4.1.2. Channel Config

It sets up an application that can be operated in 4 channels of W5100. By selecting „2 : Channel Config‟,

each channel can be set up. The default W5100 channel information is shown in <Table 2-4>.

<Table 2-4 : EVB B/D Default Channel Information>

W5100 Channel Test Application

1
st
 Loopback TCP Server (Port 5000)

2
nd

 Loopback TCP Server (Port 5000)

3
rd

 Loopback TCP Server (Port 5000)

4
th
 Loopback TCP Server (Port 5000)

If “Channel Config” menu is selected in manage program, <Fig 2.10> is displayed and the functionality of

each menu is described in <Table 2-5>.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

10

<Fig 2.10 : Menu of Channel Config>

<Table 2-5 : Menu of Channel Config>

Menu Description

D : Display Config Displays current set up Test Application type of each W5100 channel

0 : 1
st
 Channel Sets up test application type at W5100 No. “0” channel

<Warning> As developing EVB B/D, DHCP Client application setup is

possible only at no. “0” channel.

1 : 2
nd

 Channel Sets up test application type at W5100 no. “1” channel

2 : 3
rd

 Channel Sets up test application type at W5100 no. “2” channel

3 : 4
th
 Channel Sets up test application type at W5100 no. “3” channel

F : Factory Reset Initialize into original setup status. Refer to <Table 2-4>

E : Exit Exits “Channel Config”

Available test application of each W5100 channel is shown as <Table 2-6>

<Table 2-6 : W5100 Channel Application Type>

Application Type Description

No Use Not used

DHCP Client Receiving Network Information of EVB B/D from DHCP Server

dynamically

<Warning> If DHCP Server does not exist in LAN, it sets back to

default value after certain amount of time

TCP Loopback Server TCP Server Test Program

<Warning> EVB B/D : TCP Server, AX1 : TCP Client

TCP Loopback Client TCP Client Test Program

<Warning> EVB B/D : TCP Client, AX1 : TCP Server

Loopback UDP UDP Test Program

Web Server Web Server Test Program

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

11

Other application types except for “DHCP Client” can be repeatedly set up regardless of channel.

<Fig 2.11> shows an example of 2
nd

 channel setting of W5100 as “TCP Loopback Client”

When inputting simply [ENTER] without IP address or port number, the default value is applied. <Table 2-7>

shows default values required for each application.

<Fig 2.11 : Loopback TCP Client Application Setting Example>

< Table 2-7 Application Default Value >

Application Type Default Value

DHCP Client None

TCP Loopback Server Listen Port Number : 5000

TCP Loopback Client Server IP Address : 192.168.0.3

Server Port Number : 3000

Loopback UDP Source Port Number : 3000

Web Server HTTP Port Number : 80

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

12

2.4.1.3. Ping Application Test

Ping Application Test is a program created for IP RAW channel evaluation of W5100 and sends Ping request

to certain peer and receives Ping Reply. This program is set up identically with the ping command in the

DOS prompt. It‟s executed when „3‟ is chosen <Fig 2.6 : Manage Program Execution>.

<Fig 2.12 : Usage of Ping Application >

<Fig 2.12> displays the execution screen of Ping Application and shows how to use the Ping Application.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

13

<Fig 2.13> shows the real example of sending the Ping Request to the destination and receiving the Ping

Reply.

<Fig 2.13 : Ping Application Test>

To terminate the Ping Application type, type “exit” at the “PING>” prompt.

2.4.2. EVB B/D Test Applications

2.4.2.1. DHCP Client

DHCP Client Application is an application that dynamically assigns network information for EVB B/D from

DHCP Server. To test DHCP Client, first of all, W5100 1
st
 channel application type must be set up as “DHCP

Client” using [Manager>>Channel Config>>0th Channel] Menu.

Refer to Chapter 2.4.1.2

<Fig 2.14> is the screen that DHCP Client successfully obtains network information. Note that DHCP Client

will be set with default network information if DHCP Server does not exist or is not able to obtain network

information from DHCP Server.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

14

 DHCP Client Start Log

 Network Information received from DHCP Server

<Fig 2.14 : DHCP Client Test>

2.4.2.2. Loopback TCP Server

Loopback TCP Server Application is an application that loops back any file or packet data through TCP

channel connected with “AX1” Program of Test PC. First of all, set any channel as “Loopback TCP Server”

application type using [Manager>>Channel Config] menu of EVB B/D to test Loopback TCP Server.

When setting up “Loopback TCP Server” application type of EVB B/D, you can set listen port to any value.

Here, it‟s set as the default value, 5000. Refer to Chapter 2.4.1.2

After the setup of EVB B/D is complete, run “AX1” at Test PC then try the connection to the IP Address.

When the connection between EVB B/D and “AX1” is successful, loop back the data. Refer to “AX1 Manual

Vx.x.pdf”

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

15

Peer Connection Information in 0 channel of W5100

<Fig 2.15 : Loopback TCP Server Test>

2.4.2.3. Loopback TCP Client

Loopback TCP Client Application is an application that loops back any file and packet data through TCP

channel connected with “AX1” Program of Test PC

After running the “AX1” on the server, set any channel of W5100 as “Loopback TCP Client” application type

using [Manager>>Channel Config] menu of EVB B/D.

When setting up the “Loopback TCP Client” Application type of EVB B/D, set the Server IP as the IP Address

of the Test PC and set Server Port as the waiting Server Port Number(3000). Refer to Chapter 2.4.1.2.

After setting up EVB B/D is complete, exit from the manager program and run EVB Test Application. If EVB

B/D is connected to “AX1” successfully, loop back the desired data. Refer to “AX1 Manual Vx.x.pdf”

 Peer Connection Information
 in 1 channel of W5100

<Fig 2.16 : Loopback TCP Client>

2.4.2.4. Loopback UDP

Loopback UDP Application is an application that loops back any file and packet data through UDP Channel

connected with “AX1” Program of Test PC. First of all, to test Loopback UDP, set up any channel of W5100

as “Loopback UDP” Application Type using [Manager>>Channel Config] Menu of EVB B/D.

In setting up “Loopback UDP” Application type, set Source Port as any value. Here, it‟s set with 3000. Refer

to Chapter 2.4.1.2

After EVB B/D setup is over, loop back desired data with IP Address and UDP Source Port of EVB B/D using

menu or Icon related to UDP.

Refer to “AX1 Manual Vx.x.pdf”.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

16

<Fig 2.17 : Loopback UDP Test>

2.4.2.5. Web Server

Web Server Application sends and receives web pages and EVB B/D control data through HTTP Channel

connected with web browser. For Web Server testing, set up any channel of W5100 as “Web Server”

Application Type using [Manager>>Channel Config] menu of EVB B/D.

When setting up “Web Server” Application Type of EVB B/D, set HTTP port as any value. Here, it‟s set to 80,

the default value. Refer to Chapter 2.4.1.2.

After setup for EVB B/D, run Web browser in the Test PC, type the URL(http://192.168.0.2/) of the EVB B/D

in the address field and connect to EVB B/D.

<Fig 2.18 : Web Server Test>

If the web browser is successfully connected to HTTP port of EVB B/D, the Web Page of <Fig 2.19> can be

viewed. In case Web Page of <Fig 2.19> is not shown, refresh the screen using the “Refresh” function of the

web browser.

http://192.168.0.2/

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

17

<Fig 2.19 : Default Web Page of EVB B/D>

If [Control] button on the Web Page in <Fig 2.19> is clicked, it can set the network information or show the

web page that can turn on or off LEDs(D3,D4) and display rows of text on Text LCD display.

<Fig 2.20 : Web Page of EVB B/D Control>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

18

2.5. Troubleshooting Guide

2.5.1. Ping

When you can not reach EVB B/D by Ping command,

Step 1. Check if you connect correctly test PC and EVB B/D with UTP cable.

Step 2. Check if interface jumper of JP3 is correctly set.

 JP3 : SPI mode (pin2-3 should be connected), Bus mode(pin1-2 should be connected)

Step 3. Check if you correctly change your test PC's network environment (IP address, Gateway,

Subnet)? If not, you should change it as follows:

- IP address: 192.168.0.3

- Gateway address: 192.168.0.1

- Subnet Mask: 255.255.255.0

Step 4. Check if link LED of MAGJACK(left LED from rear view) is on? If it is off, check UTP cable is

working properly.

2.5.2. Misc.

When the serial terminal screen remains blank with the power on after a connection is made

Step 1. Check the connection condition of the serial cable.

Step 2. Check the COM Port numbers of the PC and terminal coincide.

Step 3. Check the terminal‟s baud rate 57600.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

19

3. Programmer‟s Guide

3.1. Memory Map

3.1.1. Code & Data Memory Map

Memory Map of EVB B/D is composed of code memory 128 Kbytes and data memory 64Kbytes. Data

memory is divided into SRAM, W5100, and Text LCD Area. Other than these, there is 4Kbytes AVR Internal

EEPROM. Various types of environmental variables are recorded on this EEPROM.

<Fig 3.1>, <Table 3-1> are representations of System Memory Map of EVB B/D.

CODE

AVR Internal Flash

128KB

AVR Internal

EEPROM 4KB

AVR Internal SRAM

External

SRAM

W5100
Control Regs.

Not Used

W5100
TX,RX Buffer

16KB

TEXT LCD

Not Used

0x00000

0x1FFFF

0x8000

AVR Regs.
0x0000

0x0100

0x8400

0x9000

0x9400

0xC000

0xFFFF

0x1100

<Fig 3.1: EVB B/D Memory Map>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

20

<Table 3-1: Device MAP Definition>

Device Map Define Source Code

W5100 #define __DEF_IINCHIP_MAP_BASE__ 0x8000

#if (__DEF_IINCHIP_BUS__ == __DEF_IINCHIP_DIRECT_MODE__)

 #define COMMON_BASE __DEF_IINCHIP_MAP_BASE__

#else

 #define COMMON_BASE 0x0000

#endif

#define __DEF_IINCHIP_MAP_TXBUF__ (COMMON_BASE + 0x4000)

#define __DEF_IINCHIP_MAP_RXBUF__ (COMMON_BASE + 0x6000)

mcu/types.h

Text LCD #define LCD_BASEADDR 0x9000 evb/lcd.h

3.1.2. AVR Internal EEPROM MAP

<Fig 3.2>, <Table 3.2> are representations of AVR Internal EEPROM Map.

Refer to “evb/config.h” and “evb/config.c.”

<Fig 3.2: AVR Internal EEPROM Map>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

21

<Table 3-2: AVR Internal EEPROM MAP Definition>

System

Information

#define SYS_INFO 0x00

#define SYS_TEST (SYS_INFO)

#define SYS_VER (SYS_TEST + 2)

#define SYS_AUTORESET (SYS_VER + 4)

#define SYS_ANY_PORT (SYS_AUTORESET + 1)

Network

Information

#define NET_CONF 0x20

#define NET_TEST (NET_CONF)

#define NET_MAC (NET_TEST+2)

#define NET_SIP (NET_MAC + 6)

#define NET_GWIP (NET_SIP + 4)

#define NET_SN (NET_GWIP + 4)

#define NET_DNS (NET_SN + 4)

#define NET_MEMALLOC (NET_DNS + 4)

Channel

Information

#define CH_CONF 0x50

#define CH_TEST (CH_CONF)

#define CH_TYPE_0 (CH_TEST + 2)

#define CH_PORT_0 (CH_TYPE_0 + 1)

#define CH_DESTIP_0 (CH_PORT_0 + 2)

#define CH_TYPE_1 (CH_DESTIP_0 + 4)

#define CH_PORT_1 (CH_TYPE_1 + 1)

#define CH_DESTIP_1 (CH_PORT_1 + 2)

#define CH_TYPE_2 (CH_DESTIP_1 + 4)

#define CH_PORT_2 (CH_TYPE_2 + 1)

#define CH_DESTIP_2 (CH_PORT_2 + 2)

#define CH_TYPE_3 (CH_DESTIP_2 + 4)

#define CH_PORT_3 (CH_TYPE_3 + 1)

#define CH_DESTIP_3 (CH_PORT_3 + 2)

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

22

3.1.2.1. System Information

System Information area is used in recording System Information such as Firmware Version of EVB B/D.

<Table 3-3: System Information>

Name Description Default Value

SYS_TEST Valid Check of System Information

0xA5A5 – Valid

Others – Invalid

SYS_VER F/W Version 0xAABBCCDD (AA.BB.CC.DD)

SYS_AUTORESET Auto reset check in case of setting up

any environmental variable

0x01 – System Auto Reset

Others – No Reset

SYS_ANY_PORT Using Any Port Number at Socket

creation

1000 ~ 65535

System Information is accessed as SYSINFO Data Type.

<Table 3-4: SYSINFO Data Type Definition>

Type Definition Instance

typedef struct _SYSINFO
{
 u_int test;
 u_long ver;
 u_char auto_reset;
 u_int any_port;
}SYSINFO;

SYSINFO SysInfo;

<Table 3-5: System Information Access Functions>

Function Description

void set_sysinfo(SYSINFO* pSysInfo) Save the System Information

void get_sysinfo(SYSINFO* pSysInfo) Get the System Information

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

23

3.1.2.2. Network Information

Network Information is used in recording Network Configuration information to be used for EVB B/D.

<Table 3-6: Network Information>

Name Description Default Value

NET_TEST Valid check of Network

Information

0xA5A5 – Valid

Others – Invalid

NET_SIP Source IP Address 0xC0A80002 (192.168.0.2)

NET_GWIP Gateway IP Address 0xC0A80001 (192.168.0.1)

NET_SN Subnet Mask 0xFFFFFF00 (255.255.255.0)

NET_DNS DNS Server IP Address 0x00000000 (0.0.0.0)

NET_MEMALLOC W5100 Memory Allocation 0x55

Network Information is accessed as NETCONF Data Type.

<Table 3-7: NETCONF Data Type Definition>

Type Definition Global Instance

typedef struct _NETCONF
{
 u_int test;
 u_char mac[6];
 u_long sip;
 u_long gwip;
 u_long sn;
 u_long dns;
 u_char mem_alloc;
}NETCONF;

NETCONF NetConf;

<Table 3-8: Network Information Access Functions>

Function Description

void set_netconf(NETCONF* pNetConf) Save the Network Information

void get_netconf(NETCONF* pNetConf) Get the Network Information

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

24

3.1.2.3. Channel Information

Following table introduces applications to be used in 4 channels of W5100.

<Table 3-9: Channel Information>

Name Description Default Value

CH_TEST Valid check of channel

Information

0xA5A5 – Valid

Others – Invalid

CH_TYPE_X Application type of

No.”X” Channel

Default - LB_TCPS

NOTUSE : Not Used

DHCP_CLIENT : DHCP Client

LB_TCPS : Loopback TCP Server

LB_TCPC : Loopback TCP Client

LB_UDP : Loopback UDP

WEB_SEVER : Web Server

CH_PORT_X Source / Destination

Port number of No.”X”

Little Endian

LB_TCPS : Default Source Port, 0x5000

LB_TCPC : Default Destination Port, 0x3000

LB_UDP : Default Source Port, 0x3000

WEB_SERVER : 80

CH_DESTIP_X Destination IP addres of

No. “X” channel

0xC0 A80003 (192.168.0.3)

Channel Information is used for recording application type for 4 channels of W5100.

Channel application type includes Loopback TCP Server, Loopback TCP Client, Loopback UDP, DHCP

Client, Web Server. Channel Information is defined as APPTYPE enumeration type.

<Table 3-10: Channel Application Type>

typedef enum _APPTYPE
{
 NOTUSE,
 DHCP_CLIENT,
 LB_TCPS,
 LB_TCPC,
 LB_UDP,
 WEB_SERVER
}APPTYPE;

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

25

Channel Information is accessed as CHCONF Data Type.

<Table 3-11: CHCONF Data Type Definition>

Type Definition Global Instance

typedef struct _CHCONF
{
 u_int test;
 struct _CH_CONF
 {
 u_char type;
 u_int port;
 u_long destip;
 }ch[4];
}CHCONF;

CHCONF ChConf;

<Table 3-12: Channel Information Access Function>

Function Description

void set_chconf(CHCONF* pChConf) Save the channel information

void get_chconf(CHCONF* pChConf) Get the channel information

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

26

3.2. EVB B/D Firmware

EVB B/D Firmware -EVB main()- can be divided into two parts. - Manage Program that sets up various

environments for running EVB B/D and Loopback Programs that tests W5100 performance. There are

Internet Application using Internet Protocols such as DHCP, HTTP, DNS, and ICMP.

Let‟s look at the source list of which EVB B/D is composed and then look at each application source.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

27

3.2.1. Sources

<Table 3-13: EVB B/D Sources>

Classification

(Directory)
Files Description

app

ping_app.h, ping_app.c Ping Request App implementation

loopback.h, loopback.c TCP, UDP Loopback Apps implementation

webserver.h, webserver.c Webserver App implementation

mcu delay.h, delay.c Delay Function – wait_xxx()

serial.h, serial.c AVR UART control

timer.h, timer.c AVR Timer enable & disable

types.h AVR Data Type Definition, & Global Difinition

evb channel.h, channel.c Channel App Handler registration & cancellation

config.h, config.c EVB B/D Environment

evb.h, evb.c EVB B/D initialization

lcd.h, lcd.c EVB B/D Text LCD control

led.h, led.c EVB B/D LED(D3,D4) control

manage.h, manage.c Manage App

inet dhcp.h dchp.c DHCP Client Protocol

dns.h, dns.c DNS Client Protocol

httpd.h, httpd.c HTTP Protocol

ping.h, ping.c Ping Protocol

main main.h, main.c EVB B/D F/W main()

rom [webpage] EVB B/D Web Pages

romfs.h, romfs.c EVB B/D Web Pages Image

searchfile.h,searchfile.c EVB B/D Web Page control

util myprintf.h printf() for debugging

sockutil.h, sockutil.c Utilities relating Socket

util.h, util.c Utilities

iinChip iinchip_conf.h System Dependant Defintion of W5100

W5100.h, w5100.c I/O Functions of W5100

socket.h, socket.c Socket APIs for W5100

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

28

3.2.2. How to Compile

Sources of Chapter 3.2.1 compile in bundle after arranging SRC items.

Compiling of W5100E01-AVR B/D firmware can be processed by using WINAVR and AVRSTUDIO. First,

install the WINAVR and AVRSTUDIO at the PC. Then, open the firmware file, "~/sw/fw/W5100E01-AVR.aps"

through AVRSTUDIO project file to perform the compiling easily.

Be sure to check compile setting detail at the Configuration option of Project menu of AVRSTUDIO. For the

setting method, refer to AVR Studio User Guide.

As the firmware provided by WIZnet is based on AVR-GCC 3.4.6, it can not be operated correctly at another

version of the comiler.

*만일 이전 AVR-GCC 3.4.3을 사용하실경우, "~/sw/fw/README.txt"파일을 참고하세요

After compile is completed, a hex file will be created in the folder that user defined before. This file will be

programmed in Atmega128.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

29

< Table 3-14 : W5100’s DEFINE Option (types.h) >

#define _ENDIAN_LITTLE_ 0

#define _ENDIAN_BIG_ 1

#define SYSTEM_ENDIAN _ENDIAN_LITTLE_

#define __DEF_IINCHIP_DIRECT_MODE__ 1

#define __DEF_IINCHIP_INDIRECT_MODE__ 2

#define __DEF_IINCHIP_SPI_MODE__ 3

#define __DEF_IINCHIP_BUS__ __DEF_IINCHIP_DIRECT_MODE__

//#define __DEF_IINCHIP_BUS__ __DEF_IINCHIP_INDIRECT_MODE__

//# define __DEF_IINCHIP_BUS__ __DEF_IINCHIP_SPI_MODE__

Since EVB B/D is Little-Endian system, SYSTEM_ENDIAN should be defined _ENDIAN_LITTLE_ and used.

If the target system is Big-Endian, the defined items should be defined _ENDIAN_BIG_.

If W5100 is intended to be used as different mode other than Direct Bus Mode, use desired Bus Mode

defined as __DEF_IINCHIP_BUS__ instead of __DEF_IINCHIP_DIRECT_MODE__. If DEFINE OPTION of

W5100 is changed, the sources must Re-Build. To Re-Build project, do “make clean”, then “make”.

In case of SPI mode, be sure to change the configuration of JP3 in the W5100E01-AVR board. For more

detail, refer to Chapter 2.1.1 EVB B/D Layout & Configuration.

3.2.3. How to download

For downloading the hex file, we use AVRStudio and AVRISP Cable.

1) Connect AVRISP Cable to JP3 at the PM-A1.

2) Supply the power to EVB B/D.

3) Run AVRStudio.exe.

4) Select “ATmega128” in Device section.

5) Select the HEX file in FLASH section.

6) Click “Program” button.

Please refer to “AVR Tool Guide.pdf” for more information.

3.2.4. EVB B/D‟s main()

If we take closer look at main(), for certain amount of time, we wait for Manage Program from RS232

Terminal after initialization of board with board reset. At this point, if RS232 terminal displays the Manage

Program entering command, EVB B/D environment such as network information and channel Information

can be set and ping request program can be run.

If Manage Program is done or there is no entering command from RS232 terminal, the application for each

of 4 channels of W5100 is executed and initialized using previously set network information.

<Fig 3.3> process procedure of EVB B/D main(). Refer to “main/main.c”

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

30

If DHCP client exists in the application, the DHCP client obtains the network information from DHCP server

by calling „get_IP_DHCPS()‟ function. If DHCP client application does not exist or fails to obtain network

information from DHCP server, the EVB B/D is initialized with previously-set network information.

After the initialization, it runs test applications of EVB B/D by calling each registered application handler. For

further details on DHCP client program, refer to “Chapter 3.2.6.5 DHCP Client.”

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

31

<Table 3-15: Reference Functions in EVB B/D’s main()>

Function Name Description Location

int main(void) EVB B/D main() main/main.c

void evb_init(void) AVR, Text LCD,

 UART initialization

evb/evb.c

void net_init(void) EVB B/D Network initialization evb/evb.c

void check_manage(void) Manage Program action wait and

execution

evb/manage.c

void register_channel_handler

(u_char ch, void

(*handler)(u_char))

Channel Application Handler

registration

evb/channel.c

void unregister_channel_handler

(u_char ch)

Channel Application Handler

cancellation

evb/channel.c

void init_dhcp_client(SOCKET s,

void (*ip_update)(void),

void (*ip_conflict)(void))

DHCP Client Program initialization inet/dhcp.c

u_int getIP_DHCPS(void) Network Information acquisition from

DHCP Server

inet/dhcp.c

void check_DHCP_state(SOCKET

s)

Check to expire the leased time from

DHCP server

inet/dhcp.c

void loopback_tcps(u_char ch) Loopback - TCP Server app/loopback.c

void loopback_tcpc(u_char ch) Loopback - TCP Client app/loopback.c

void loopback_udp(u_char ch) Loopback - UDP app/loopback.c

void web_server(u_char ch) Web Server Program app/webserver.c

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

32

START

main()

Initialize EVB B/D
evb_init()

Check to enter the manage mode
check_manage()

ChConf[i] == DHCP_CLIENT

sock_flag = 0x80

sock_flag = 0x00

i = 0

i < MAX_SOCK_NUM

ChConf[i].type == NOTUSE

ChConf[i].type
 ==

DHCP_CLIENT

ChConf[i].type == LB_TCPS

ChConf[i].type == LB_TCPC

ChConf[i].type == LB_UDP

ChConf[i].type ==

WEB_SERVER

Register i-th Channel Apps Handle
register_channel_handle(check_DHCP_state())

Register i-th Channel Apps Handle
register_channel_handle(loopback_tcps())

Register i-th Channel Apps Handle
register_channel_handle(loopback_tcpc())

Register i-th Channel Apps Handle
register_channel_handle(loopback_udp())

Register i-th Channel Apps Handle
register_channel_handle(web_server())

Network Configruation
net_init()

i = 0

i < MAX_SOCK_NUM Call i-th Channel Apps Handle

i++

i++

Unregister i-th Channel Apps Handle
unregister_channel_handle()

Y

N

Y

N

Y

N

Y

N

Y

Y

Y

N

N

N

N

Y

Get a Network Info From a DHCP Server
get_IP_DHCPS()

Success ? ChConf[i].type = NOTUSE

Y

N

Y N

Get MAC Addr from EEPROM
get_netconf(&NetConf)

Set theMAC Addr to DHCP Cleint

memcpy(SRC_MAC_ADDR,NetConf.mac,6)

Initialize DHCP Client
init_dhcp_client()

<Fig 3.3: EVB B/D’s main()>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

33

3.2.5. Manage Program

Manage Program is a program that sets up network and channel information through RS232 terminal and

tests application by sending Ping Request to certain Destination.

Manage program can be started by calling check_manage() from main() function. check_manage() checks if

there is any entering command to Manage Program from RS232 terminal - if character „M‟ or „m‟ is input or

not. And if the command is detected, Manage Program will be entered through manage_config(). If the user

change the configuration, the EVB B/D automatically reboots and check_manage() is skipped.

START

check_manage()

Check to reset EVB B/D automatically
get_reset_flag()

Reset Automatically?
Clear Reset Flag

set_reset_flag(SYSTEM_MANUAL_RESET)

Display the Followed Console Message

“Press 'M' to enter the manager mode”

i = 0

j = 0

Is Key pressed?

Check to Press a Key
uart_keyhit()

Get the pressed Key
uart0_getchar()

Key == ‘M’
or

Key == ‘m’

Key == ‘ESC’

Run Manage Program
manage_config()

Wait 10ms
wait_1ms(10)

j < 40

Display

the Progressing Character(.)

i < 16

END

END

N

i++

j++

N

Y Y

Y

N

N

Y

Y

Y

N

Y

N

<Fig 3.4: check_manage()>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

34

<Fig 3.5: manage_config()>

If the EVB B/D is updated, the EVB B/D automatically reboots to apply the updated configuration.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

35

<Table 3-16: Caller Function at Manage Program >

Function Name Description Location

void check_manage(void) Decision of Manage Program is executed

or not

evb/manage.c

void manage_config(void) Manage Program evb/manage.c

u_char manage_network(void) Configure Network Information evb/manage.c

u_char manage_channel(void) Configure Channel Information evb/manage.c

u_char get_reset_flag(void) EVB B/D‟s Auto/Manual Reset recognition

and confirm

Auto : SYSTEM_AUTO_RESET

Manual : SYSTEM_MANUAL_RESET

evb/config.h

evb/config.c

void set_reset_flag(u_char flag) Copy of EVB B/D Reset status evb/config.c

void load_factory_netconf(void) Factory Reset Network Information evb/config.c

void load_factory_chconf(void) Factory Reset Channel Information evb/config.c

u_int uart_keyhit(u_char uart) Checking the Input from UART(0,1) mcu/serial.c

char uart0_getchar(void) Read one character from UART0 mcu/serial.c

void wait_1ms(u_int cnt) Delay Function mcu/delay.c

void ping_request(void) Ping Request Test Program app/ping_app.c

3.2.5.1. Network Configuration

Network Configuration is a sub-program of Manage Program and built with manage_network(). And it‟s the

program that sets up Network Information of EVB B/D. In general, MAC Address of Network Information is

hardly updated after the initial setup. Accordingly, MAC Address setup does not provide Configuration Menu

such as Source IP, Gateway IP, or Subnet Mask but it provides hidden menu. Also, MAC Address is not

changed at the time of Factory Reset. MAC Address is updated using „M‟ or „m‟.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

36

 END

Display
Network Config Menu

Y

Get the pressed Key
sel = uart0_get_char()

sel == ‘d’ or

sel == ‘D’

Get the Network Information
get_netconf(&NetConf)

N

 NETWORK CONFIG");

 0 : Display Config
 1 : Source IP");
 2 : Gateway IP");
 3 : Subnet Mask");
 4 : DNS Server IP"
 F : Factory Reset"
 E : Exit");

Y
sel == ‘1’

N

Y
sel == ‘2’

N

Y

sel == ‘3’

N

Y
sel == ‘M’

or

sel == ‘m’
N

Y
sel == ‘F’

or

sel == ‘f’
N

Y

sel == ‘4’

N

Y
sel == ‘E’

or

sel == ‘e’

N

Get a Value
uart0_gets()

Verify the Value
VerifiyIPAddress()

Verifty OK?

Update Source IP Address
NetConf.sip = htonl(inet_addr())

Get a Value
uart0_gets()

Verify the Value
VerifiyIPAddress()

Verifty OK?

Update G/W IP Address
NetConf.gwip = htonl(inet_addr())

Get a Value
uart0_gets()

Verify the Value
VerifiyIPAddress()

Verifty OK?

Update S/N Mask
NetConf.sn = htonl(inet_addr())

Get a Value
uart0_gets()

Verify the Value
VerifiyIPAddress()

Verifty OK?

Update DNS IP Address
NetConf.dns = htonl(inet_addr())

Get a Value
uart0_gets()

Verify the Value
ValidATOI()

Update MAC Address

Factory Reset
load_factory_netconf()

Y
sel == 0x1B

N

Verifty OK?

Display Network Information
display_netconf()

N

START

manage_network()

Update Network Information
set_netconf(&NetConf)

Y

N

N

Y

N

Y

N

Y

N

Y

<Fig 3.6: manage_network()>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

37

<Table 3-17: Reference Functions in manage_config()>

Function Name Description Location

u_char manage_network(void) Configure Network Information evb/manage.

c

void get_netconf(NETCONF*

pNetConf)

Get the Network Information that is

previously set

evb/config.c

void set_netconf(NETCONF*

pNetConf)

Update the Network Information evb/config.c

void display_netconf

(NETCONF* pNetConf)

Outputs the Network Information to

the terminal

evb/config.c

Void load_factory_netconf(void) Load Factory Reset Network

Information

evb/config.c

char uart0_getchar(void) Read one character from UART0 mcu/serial.c

int uart_gets(u_char uart, char * str,

char bpasswordtype, int max_len)

Read text lines from UART(0,1) mcu/serial.c

char VerifyIPAddress(char* src) Check if the string is IP Address util/sockutil.c

Unsigned long htonl

(unsigned long hostlong)

Transforms ordering of Long Type

Data

util/sockutil.c

Unsigned long inet_addr

(unsigned char* addr)

Transforms IP string into long type util/sockutil.c

3.2.5.2. Channel Configuration

Channel Configuration, a sub-program of Manage Program is made of manage_config() and decides which

application to be applied for each of 4 channels of W5100.

The application types that can be set up, are DHCP Client, Loopback TCP Server/Client, Loopback UDP, and

Web Server Program. Each channel can be set up with any one of the applications above. However, the

DHCP Client can only be supported by the first channel and the setting cannot be repeated on other

channels.

TCP Server Program (LB_TCPS,WEB_SERVER) can be set repeatedly by all channels. In such case, the

same port can be used. Here, the number of clients is as many as the same port number. Other applications

can be set repeatedly by channels, but the same port number cannot be used.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

38

<Table 3-18: Constraint by Application Types>

APPTYPE
Repeat

Setups
Port Repeat

Destination IP

Setup

DHCP_CLIENT X X X

LB_TCPS O

O, supports all the simultaneously

connected clients as many as the number

of repeated ports

X

LB_TCPC O X O

LB_UDP O X X

WEB_SERVER O

O, supports all the simultaneously

connected clients as many as the number

of repeated ports

X

<Fig 3.7: manage_channel()>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

39

< Table 3-19: Reference Functions in manage_channel() >

Function Name Description Location

u_char manage_channel(void) Configure Channel Information evb/manage.c

void select_ch_app

(CHCONF* pChConf, u_char ch)

Select available Application Type and Setup

required factors

evb/manage.c

void get_chconf

(CHCONF* pChConf)

Get Channel Information evb/config.c

void set_chconf

(CHCONF* pChConf)

Update Channel Information evb/config.c

void display_chconf

(CHCONF * pChConf)

Output Channel Information through Terminal evb/config.c

void load_factory_chconf(void) Factory Reset Channel Information evb/config.c

char uart0_getchar(void) Read one character from UART0 mcu/serial.c

3.2.5.3. Ping Request Program

Ping Request Program is a program that sends Ping Request to a certain destination. It uses ICMP protocol

message on IP protocol and made with ping_request().

ping_request() is created with the form similar to Ping program in DOS command prompt. It sends Ping

request to a destination after analyzing and processing the options.

Both domain name and IP address can be used for destination address to the Ping request. In case of using

domain name, domain name is changed into IP address using gethostbyname() or DNS. With the changed

IP address, the Ping request is sent.

When IP address is used with „-a‟ option, domain name can be obtained through gethostbyaddr() from DNS

Server and the Ping request is sent to the IP address. When IP address is used without the „-a‟ option, Ping

request is sent to input IP address without the connection with DNS.

gethostbyname(), gethostbyaddr() is DNS-related functions. For further information, refer to Chapter 3.2.6.6

DNS Client. <Fig 3.8> and <Fig 3.9> are processing procedures of ping_request().

<Fig 3.8> describes how tokens of inputs of Command, Option, and Option Value are created and the related

Bit of Argument Flag(PingArgsFlags) is decided.

<Fig 3.9> calls ping() based on relevant option and option after checking the validity of command, option,

and option value with bits of argument flag. ping() sends Ping request message to a certain destination and

processes the ICMP message which is received from any destination.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

40

<Fig 3.8: ping_request()>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

41

<Fig 3.9: ping_request() – Continue>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

42

Let‟s take a brief look at Ping message before we proceed to Ping program.

Ping message has the value of „0‟(Ping Reply) or „8‟(Ping Request) at Type Field. The Code Field of ICMP

Message has 0. Type Dependant Data Field(4Bytes) of ICMP Message can be re-defined as ID

Field(2Bytes), Sequence Number Field(2Bytes) respectively. Data Field of ICMP Message is filled with the

Ping data to be looped back.

Finally, it calculates the checksum of ICMP header and Ping data of which the checksum fields are 0. After

the calculation, it replaces 0 checksum fields with the newly calculated values.

<Fig 3.10> is a diagramming representation of the relationship between the ICMP message format and the

Ping message.

<Fig 3.10: ICMP Message VS Ping Message>

Checking the Ping reply to the Ping request can be processed by checking if the values of ID, sequence

number and ping data field are same or not. In case the Ping reply does not come back in wait time, the ping

can be sent again. In such case, the Ping request is sent with the sequence number incremented by 1.

Transmitting Ping request message and checking the Ping reply message were done by ping(). The

elements of ping() are of destination IP address, Ping reply wait time, number of Ping requests. Ping data

size and received Ping Replies are analyzed and processed to fit the elements.

<Fig 3.11> is the process of ping() and Ping message is defined and used as the data type of <Table 3-21>.

Refer to “inet/ping.h”

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

43

<Table 3-20: PINGMSG Data Type Definition>

typedef struct _PINGMSG
{
 char Type; // 0 - Ping Reply, 8 - Ping Request
 char Code; // Always 0
 u_short CheckSum; // Check sum
 u_short ID; // Identification
 u_short SeqNum; // Sequence Number
 char Data[PINGBUF_LEN]; // Ping Data
}PINGMSG;

Data field size of PINGMSG is of „PINGBUF_LEN‟ Byte. PINGBUF_LEN is defined as „32‟. However, data

field max size may be „1472‟. This is because the sending MTU of W5100 is 1480 bytes, and the sum of

Code, CheckSum, ID, and SeqNum Field Size is 8 Bytes. If we subtract 8 from 1480 we get 1472. Hence,

the size is 1472 bytes.

The results from ping() are saved in Data Type defined in <Table 3-22>.

<Table 3-21: PINGLOG Data Type Definition>

typedef struct __PINGLOG
{

u_short CheckSumErr;
u_short UnreachableMSG;
u_short TimeExceedMSG;
u_short UnknownMSG;
u_short ARPErr;
u_short PingRequest;
u_short PingReply;

u_short Loss;
}PINGLOG;

The saved Ping log can be output with RS232 terminal through DisplayPingStatistics() function. <Fig 3.12>

shows the process procedures of DisplayPingStatistics().

CheckSumErr field is incremented by 1 whenever the checksum of Ping Reply from peer is not correctly

received.

Unreachable MSG field and TimeExceedMSG field are incremented by 1 in case of receiving Unreachable

Message or Time Exceeded Message from peer or gateway.

UnknownMSG field is incremented by 1 when the unknown message is received.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

44

ARPErr field is incremented by 1 whenever ARP reply is not received upon ARP request to get the Hardware

address(MAC Address) of the peer.

PingRequest field is incremented by 1 whenever ping() sends Ping request.

PingReply field is incremented by 1 whenever Ping reply for Ping request from the peer is received.

Loss field is incremented by 1 whenever Wait Timeout is occurred because nothing is replied to the peer in

certain period of time after sending Ping request.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

45

Local Variable Declare & Init

SOCKET s =-1

PING PingRequest

PING PingReply

bLoop = 0, RemainTime =0, IsReceived = 0

long peerip = inet_aton(addr)

PingRequest.type = 8

PingRequest.code = 0

PingRequest.checksum = 0

PingRequest.id = Random Integer Number

PingRequest.seqnum = Random Integer Number

Fill in PingReqeust.data with a to w alphabet

Send a Ping-Reply to a peer

Call SendPingReply()

ping()

bLoop == 1 count > 0

count--

RemainTime = time / 2

PingRequest.seqnum++

PingRequest.checksum = 0

IsReceived = 0

Calculate Checksum of PingRequest

Update PingRequest.checksum

Successed to Send? PingLog.ARPErr++

 Received packet ?
s Socket Status ==

SOCK_CLOSED

RemainTime-- > 0

Y

PingLog.PingRequest++

Calculate Check Sum of PingReply

PingReply.type == 3

PingLog.Loss++
Display Loss

Ping Reply

PingLog.PingReply++

IsReceived = 1

PingLog.UnreachableErr++

IsReceived = 1

TTL

Expired

Display

Ping Reply OK

PingRequest.id

==

PingReply.id

PingRequest.seqnum-1

==

PingReply.Seqnum

addr

==

received peer addr

Check Sum Error?

addr == received

peer addr

PingReply.type == 0

PingLog.UnkonwMSG++

PingLog.ChecksumErr++

IsReceived = 1

PingReply.type == 11

Display

Checksum

Error

IsReceived = 0

PingLog.TimeExceedMSG++

IsReceived = 1

Display

Unknown

Peer

PingLog.UnkonwMSG++

Display

Unknown

Message

Display

Unreachable

Error

Is Pressed

CTRL-C?

PingReply.type == 8

END

Wait 2 ms

Y

N

N N

YY

Y

N

N
N

Y

N

N

Y

Y

Y

N

Y

Y

Y

N

N

Y

N

Y

N N

N

N

Y

Y

Y

Y

N

Open s Socket For IP_RAW Mode

setIPprotocol(s,IPPROTO_ICMP)
socket(s,SOCK_IPL_RAW)

Close Socket

close(s)

setIPprotocol(s,0)

Receive PingReply from a peer

recvfrom()

Send PingRequest to the specified peer

sendto() Reopen Socket

close(s)

setIPprotocol(s,IPPROTO_ICMP)
socket(s)

Verify the Arguments

Successed to Open?

N

<Fig 3.11: ping()>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

46

<Fig 3.12: DisplayPingStatistics()>

Ping request program is, as explained previously, a program that uses ICMP protocol which is running on IP

Protocol. In case of using ICMP channel at W5100, as shown in <Fig 3.11> and <Fig 3.13>, IP protocol to be

used must be decided. The socket must be created after calling setIPProtocol(s, IPPROT_ICMP). IP_RAW

channel must be created by calling socket(s,SOCK_IPL_RAW,port,flag) when creating the socket. In case of

closing ICMP Socket, setIPProtocol(s, 0x00) should be called after close(s) and clear the ICMP Flag which was

previously set.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

47

SendPingReply()

Declare & Initialize Local variables

SOCKET PingReplySocket;

u_int size = len;

size < PINGBUF_LEN size = PINGBUF_LEN

Find a Free Socket

Call getSocket(SOCK_CLOSED,S)

Assign the socket to PingReplySocket

PingReplySocket !=

MAX_SOCK_NUM

Create a IP RAW Socket

Call socket(IP_RAW)

Specify ICMP Protocol to the PingReplySocket

Call setIPprotocol(PingReplySocket,IPPROTO_ICMP)

Make a PingReply Packet

pingrequest.Type = 0

pingrequest.Code = 0

pingrequest.CheckSum = 0

Calculate the check sum of pingrequest

Send a Ping Reply to the specified peer

Call sendto(IP_RAW)

Successed to Create? Create Error

Successed to Send? Fail to Send

Close the PingReplySocket

Call close(PingReplySocket)

Clear the ICMP Proctocol of IP RAW

Call setIPprotocol(0)

RETURN

Fail to Send a Ping

Reply Packet

Y

N

Y

N

Y

N

Y

N

<Fig 3.13: SendPingReply()>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

48

<Table 3-22: Reference Functions in ping_request()>

Function Name Description Location

void ping_request(void) Ping Request program app/ping_app.c

void ping_usage(void) Outputs the instruction of Ping Request

program

app/ping_app.c

char ping

(int count, u_int size, u_int

time, u_char* addr, PINGLOG*

log)

Sends Ping Request to specific

destination, and processes ICMP

message received from any destination.

inet/ping.c

void DisplayPingStatistics

(PINGLOG log)

Outputs the results from ping() calling inet/ping.c

void setIPprotocol

(SOCKET s, u_char ipprotocol)

Assigns IP protocol of the related socket iinChip/w5100.c

char socket(SOCKET s,

u_char protocol, u_int port,

u_char flag)

Creates sockets related to as TCP/UDP/IP iinChip/socket.c

void close(SOCKET s); Closes the related socket iinChip/socket.c

int sendto(SOCKET s,

const u_char * buf, u_int len,

u_char * addr, u_int port)

Sends Datagram packet to specific

destination.

iinChip/socket.c

int recvfrom(SOCKET s,

u_char * buf, u_int len,

u_char * addr, u_int * port)

Receives Datagram packet from any

destination

iinChip/socket.c

SOCKET getSocket(unsigned

char status, SOCKET start)

Searches for socket has the designated

status

util/sockutil.c

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

49

3.2.6. Applications

It‟s a network application using W5100. It includes Loopback program, Web Server, and DHCP Client.

Application is selected by Manager Program.

3.2.6.1. Loopback TCP Server

The Loopback TCP Server program of EVB B/D works as server mode, and AX1 program of the testing PC

works as client mode. AX1 tries to connect to EVB B/D and if the connection is successful, AX1 transmits the

data stream through the TCP channel. EVB B/D returns back the data stream from AX1 without processing

through the TCP channel.

Loopback TCP Server Program uses loopback_tcps() and <Fig 3.14> shows the process procedure of

loopback_tcps().

loopback_tcps()

Declare & Initialize Local Variables

u_char * data_buf = TX_BUF

Select Socket Status

getSn_SR()

SOCK_ESTABLISHED?

SOCK_CLOSE_WAIT?

SOCK_CLOSED?

Y

Y

N

N

Close Socket

close(ch)

Select Recieved Size

len = getSn_RX_RSR()
len > 0

Receive the Data

recv(ch,data_buf,len)

Send the Received Data

send(ch,data_buf,len)

Create a TCP Socket

socket(ch,SOCK_STREAM,port,flag)

Wait a connetion with a client

NBlisten(ch)

RETURN

Y

Y

N

< Fig 3.14 : loopback_tcps() >

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

50

<Table 3-23: Reference Functions in loopback_tcps()>

Function Name Description Location

void loopback_tcps(u_char ch) Loopback TCP Server program app/loopback.c

uint8 getSn_SR(SOCKET s) Get the socket status iinChip/w5100.c

uint16

getSn_RX_RSR(SOCKET s)

size of data transmittable, and received

data

iinChip/w5100.c

u_char socket(SOCKET s,

u_char protocol, u_int port,

u_char flag)

Create the socket iinChip/socket.c

u_char listen(SOCKET s) It sets related socket as server mode iinChip/socket.c

u_int send(SOCKET s,

const u_char * buf, u_int len)

Transfer the data to the connected socket. iinChip/socket.c

u_int recv(SOCKET s,

u_char * buf, u_int len)

Receive the data to the connected socket. iinChip/socket.c

void disconnect(SOCKET s); Close the connection of the socket. iinChip/socket.c

If the server socket is in SOCK_CLOSED status, loopback_tcps() calls socket() with the elements of

SOCK_STREAM, Listen Port Number, and Option Flag to create TCP server socket.

The socket() function changes the socket status to SOCK_INIT regardless of the previous socket status. If

the server socket is created successfully, it‟s put in TCP Server mode after calling listen() with the server

socket as the parameter. listen() makes the server socket status as SOCK_LISTEN status and maintains

SOCK_LISTEN status until any client‟s connection.

At this point, when any client tries to connect to the server socket, the server socket status is changed from

SOCK_LISTEN to SOCK_ESTABLISHED. This is when the connection between Client and Server is

complete and data transfer is possible in SOCK_ESTABLISHED status.

Data is transferred using recv() and send() at the SOCK_ESTABLISHED. The data transfer here is 1-on-1

transfer between EVB B/D(The server) and AX1(The client).

In the SOCK_ESTABLISHED status, if the client requests closing of the connection, the server socket status

is changed from SOCK_ESTABLISHED to SOCK_CLOSE_WAIT. In SOCK_CLOSE_WAIT status, data

communication is not available and the server socket must be closed. In SOCK_CLOSE_WAIT status,

disconnect() is called to close socket. disconnect() changes the socket status to SOCK_CLOSED regardless

of previous socket status.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

51

3.2.6.2. Loopback TCP Client

At Loopback TCP Client program, EVB B/D works in client mode and AX1, PC test program works in server

mode. EVB B/D tries to connect to AX1 which is waiting as the server, if the connection is successful EVB

B/D receives data stream through TCP channel and then EVB B/D sends back the received data stream to

AX1.

Loopback TCP client program is created with loopback_tcpc() and <Fig 3.15> is processing procedure of

loopback_tcpc().

If the client socket is in SOCK_CLOSED status, loopback_tcpc() calls socket() with the elements of

SOCK_STREAM, any Port Number, and Option Flag to create TCP client socket.

In creating socket here, any port number is used for get_system_any_port(). This is because connection may

be failed if it tries to connect to the same server with same port number. After successfully creating the

socket, call connect() with the elements of the client socket to connect to the AX1 server.

connect() makes the socket status into SOCK_SYNSENT and keeps the status as SOCK_SYNSENT until it

receives the authorization for connection from the server. If the connection is successful the socket status is

changed from SOCK_SYNSENT to SOCK_ESTABLISHED. In SOCK_ESTABLISHED status, the operation

is same as explained in loopback_tcps().

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

52

loopback_tcpc()

Declare & Initialize Local Variables

u_char * data_buf = TX_BUF

Select Socket Status

getSn_SR()

SOCK_ESTABLISHED?

SOCK_CLOSE_WAIT?

SOCK_CLOSED?

Y

Y

N

N

Close Socket

close(ch)

Select Recieved Size

len = getSn_RX_RSR()
len > 0

Receive the Data

recv(ch,data_buf,len)

Send the Received Data

send(ch,data_buf,len)

Create a TCP Socket

socket(ch,SOCK_STREAM,any port,flag)

Wait a connetion with a client

NBconnect(ch,destip,destport)

RETURN

Y

Y

N

<Fig 3.15: loopback_tcpc()>

<Table 3-24: Reference Functions in loopback_tcpc()>

Function Name Description Location

void loopback_tcpc(u_char ch) Loopback TCP Client Program app/loopback.c

uint8 getSn_SR(SOCKET s) Get the socket status iinChip/w5100.c

uint16 getSn_RX_RSR(SOCKET

s)

size of data transmittable, and received

data

iinChip/w5100.c

u_char socket(SOCKET s,

u_char protocol, u_int port,

u_char flag)

Related socket can be created as

TCP/UDP/IP

iinChip/socket.c

u_char connect(SOCKET s,

u_char * addr, u_int port)

Attempts to connect to the specific

server with related socket

iinChip/socket.c

u_int send(SOCKET s,

const u_char * buf, u_int len)

Sends the data to related socket that is

in connection

iinChip/socket.c

u_int recv(SOCKET s,

u_char * buf, u_int len)

Receives the data to related socket that

is in connection

iinChip/socket.c

void disconnect(SOCKET s); Close the related socket iinChip/socket.c

u_int get_system_any_port(void) Get any port number. evb/config.c

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

53

3.2.6.3. Loopback UDP

Loopback UDP Program is a program that uses unicast datagram communication of UDP protocol. It

operates same as Loopback TCP Server/Client program does. UDP communication includes unicast

datagram communication and broadcast datagram communication, and basically supports 1-to-many

communication that is used for many destinations with one channel.

Loopback UDP program uses loopback_udp() and <Fig 3-16> shows processing procedure of

loopback_udp().

loopback_udp()

Declare & Initialize Local Variables

u_char * data_buf = TX_BUF

u_long destip = 0

u_int destport = 0

Select Socket Status

getSn_SR()

SOCK_INIT?

SOCK_UDP?

SOCK_CLOSED

?

Y

Y

N

N

Select Recieved Size

len = getSn_RX_RSR()
len > 0

Receive the Data

recvfrom(ch,data_buf,len,&destip,&destport)

Send the Received Data

sendto(ch,data_buf,len,destip,destport)

Create a TCP Socket

socket(ch,SOCK_DGRAM,port,flag)

RETURN

Y

Y

N

<Fig 3.16: loopback_udp()>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

54

<Table 3-25: Reference Functions in loopback_udp()>

Function Name Description Location

void loopback_udp(u_char ch) Loopback udp program app/loopback.c

uint8 getSn_SR(SOCKET s) Gets the socket status iinChip/w5100.c

uint16 getSn_RX_RSR(SOCKET

s)

size of data transmittable, and received

data

iinChip/w5100.c

u_char socket(SOCKET s,

u_char protocol, u_int port,

u_char flag)

Creates related socket as TCP/UDP/IP. iinChip/socket.c

u_int sendto(SOCKET s,

const u_char * buf, u_int len,

u_char * addr, u_int port)

Sends data to specific port of specific

destination related socket

iinChip/socket.c

u_int recvfrom(SOCKET s,

u_char * buf, u_int len, u_char *

addr, u_int * port)

Sends data to any port of any

destination related socket

iinChip/socket.c

void close(SOCKET s) Close related socket iinChip/socket.c

If the udp socket is in SOCK_CLOSED status, socket() is called using SOCK_DGRAM, Port Number, and

Option Flag as the elements to create the UDP socket.

UDP communication, as opposed to TCP, is a datagram communication without the requirement of

connection process. So, direct data communication is possible immediately after socket creation. After

creation of UDP socket, the udp socket status will be changed from SOCK_CLOSED to SOCK_UDP.

Here, not like TCP for data communication which uses send() and recv(), sendto() and recvfrom() are used.

This is because TCP is 1-to-1 communication method of which destination is known but UDP is 1-to-many

communication without connection procedure. sendto() sends data to specific port of specific destination that

is sent as an element, recvfrom() is used to receive the incoming data from temporary port. Destination

information from recvfrom() is informed to user using destip and destport which are sent as elements.

In loopback_udp(), there is no example of using close(), but in case that the UDP communication is not

needed anymore, close() can be always called to close the udp socket.

3.2.6.4. Web Server

Web Server program is a TCP server program using HTTP protocol which is used on TCP protocol. Before

building Web server program, message structure of HTTP protocol that is transmitted between Web server

and Web client(Web browser) are needed to be understood.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

55

HTTP, which stands for Hyper Text Transfer Protocol, is a protocol used in Internet for transferring between

Web server and client browsers.

<Table 3-26: Web Browser’s HTTP Request Operation Procedure >

Request of Client(Web Browser)

 --> URL Analysis(Transforming Domain Name to IP Address at DNS)

 --> Connection to server at the other end

 --> Client(Web Browser) requests document wanted from URL

 --> Sending Document(Server)/Receiving Document (Client)

 --> Displays received document on the browser

Web Server program analyzes method and URI(Uniform Resource Identifier) of HTTP Request message

received from web browser. In case the related URI simply requests for web page, the page will be sent. If it

requests an action such as CGI(Common Gateway Interface), it takes the action and the result is informed in

web page.

<Fig 3.17> shows HTTP message flow between web server and web client. <Table 3-28> shows structure of

HTTP message.

<Fig 3.17: HTTP Message Flow>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

56

<Table 3-27: HTTP Message Format>

HTTP-message = Simple-Request

 | Simple-Response

 | Full-Request

 | Full-Response

Full-Request = Request-Line

 *(General-Header | Request-Header | Entity-Header)

 CRLF

 [Entity-Body]

Full-Response = Status-Line

 *((General-Header | Response-Header | Entity-Header) CRLF)

 CRLF

 [Entity-Body]

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

Entity-Header = Allow

 | Content-Encoding

 | Content-Length

 | Content-Type

 | Expires

 | Last-Modified

 | extension-header

Entity-Body = *OCTET

Method = "GET" | "HEAD" | "POST" | extension-method

For further information on HTTP message, refer to RFC2616. HTTP request message varies according to

web browser type. <Table 3-29> shows the examples of HTTP message communication between Internet

Explores on Windows 2000 and EVB B/D.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

57

<Table 3-28: HTTP MESSAGE BETWEEN EVB B/D AND WEB BROWSER>

HTTP Request Message

Ex1> GET wiz_log.gif HTTP/1.1CRCF

 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.-ms-

powerpoint, application/vnd.-ms-excel, application/ms-word, */*CRCF

 Accept Language: koCRCF

 Accept Encoding: gzip, deflateCRCF

 User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0; .NET CLR

1.3705)CRCF

 Host: 192.168.0.2CRCF

 Connection: Keep-AliveCRCF

 CRCF

Ex2> GET http://192.168.0.2/LCDNLED.CGI?lcd=hi.+EVB B/D&led0=on HTTP/1.1CRCF

 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.-ms-

powerpoint, application/vnd.-ms-excel, application/ms-word, */*CRCF

 Accept Language: koCRCF

 Accept Encoding: gzip, deflateCRCF

 User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0; .NET CLR

1.3705)CRCF

 Host: 192.168.0.2CRCF

 Connection: Keep-AliveCRCF

 CRCF

HTTP Response Message

Ex1> HTTP/1.1 200 OK CRCF

 Content-Type: text/htmlCRCF

 Content-Length: 1451CRCFCRCF

 [Html Document]

Ex2> HTTP/1.1 200 OKCRCF

 Content-Type: gif/imageCRCF

 Content-Length: 613CRCFCRCF

 [GIF IMAGE]

Web Server program is composed of web_server() to manage HTTP server socket and proc_http() to

manage HTTP message.

<Fig 3.18> is processing procedure.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

58

web_server()

Declare & Initialize Local Variables

u_char * http_request = RX_BUF

Select Socket Status

getSn_SR()

SOCK_ESTABLISHED

?

SOCK_CLOSE_WAIT

?

SOCK_CLOSED?

Y

Y

N

N

Close Socket

close(ch)

Select Recieved Size

len = getSn_RX_RSR()
len > 0

Receive the Data

recv(ch,http_request,len)

Create a TCP Socket

socket(ch,SOCK_STREAM,port,flag)

Wait a connetion with a client

NBlisten(ch)

RETURN

Y

Y

N

Process the HTTP Message

http_proc(ch,http_request,len)

Wait for sending the HTTP

Response completely

Close Socket

close(ch)

<Fig 3.18: web_server()>

Since web_server() is TCP server program, it is built in the similar way as loopback_tcps() as explained in

Chapter 3.2.6.1. Difference between web_server() and loopback_tcps() is in the data communication codes.

web_server() calls proc_http() that processes HTTP request message from web browser at

SOCK_ESTABLISHED of the http socket.

After calling function proc_http(), it waits until the HTTP response message to HTTP request from web

browser, and then calls disconnect() to close the http socket.

This socket close is called Active Close and, in the case, EVB B/D requests the close to the client first. For

your reference, Passive Close is where client requests disconnection first. The reason why web server

program supports Active Close is that EVB B/D supports the connection with other clients.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

59

<Fig 3.19: proc_http()>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

60

proc_http() calls parse_http_request() to analyse the HTTP request message received from web browser. If

the METHOD of analyzed HTTP request message is “GET”, “HEAD”, or “POST”, get_http_uri_name() is

called and URI Name is extracted from HTTP Request message. If extracted URI Name is “/”,replace URI

Name “/” to “index.html” which is web server default page of EVB B/D, because this means that web browser

is requesting default page of web server.

After getting the HTTP request type of HTTP request message by calling find_http_uri_type(), if HTTP

request type is “CGI”, it performs the related CGI command process.

After processing CGI commands or in case that HTTP request type is not the CGI, search file with URI Name

from ROM File Image which is built in EVB B/D.

If the file is found, create HTTP response message and send it.

HTTP Response message is composed of HTTP response header transmission and HTTP response body

transmission. For transmission of HTTP response header, it calls make_http_response_head() using HTTP

request type as the element to create HTTP response header. After transmitting the created HTTP response

header, the HTTP response body is transmitted. For example, if the HTTP response body is any file in ROM

File Image, the files are much bigger than the MTU of W5100. Hence it has to be divided into maximum size

of W5100 before transmission. At this point, if system environment variables that are defined in EVB B/D in

HTTP response body exist, it calls replace_sys_env_value() and replaces system environment variables to

system environment value stored in EVB B/D.

<Table 3-29: System Environment Variables Usage at “evbctrl.html” >

<tr>
<td width="110" height="22">...Source IP</td>
<td width="240" height="27"><input name="sip" type="text" size="20" value="SRC_IP_ADDRES"></td>

</tr>
<tr>

<td width="110" height="22">...Gateway IP</td>
<td height="27"><input name="gwip" type="text" size="20" value="$GW_IP_ADDRESS$"></td>

</tr>
<tr>

<td width="110" height="22">...Subnet Mask</td>
 <td height="27"><input name="sn" type="text" size="20" value="$SUB_NET__MASK$"></td>

</tr>
<tr>
 <td width="110" height="22">...DNS Server IP</td>
 <td height="27"><input name="dns" type="text" size="20" value="DNS_SERVER_IP"></td>

</tr>
<tr>
 <td width="110" height="22">...MAC Address</td>
 <td height="27">$SRC_MAC_ADDRESS$</td>

</tr>

<Table 3-30> is a part of “evbctrl.html” in ROM File Image of EVB B/D.

The length of the system environment variables is defined to fit the length of system environment value to be

replaced. For example, if Source IP Address of EVB is expressed in string, the maximum is 16. Hence, the

length of $SRC_IP_ADDRESS$ is 16 as well. „ROM File System‟ of EVB B/D can be created with

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

61

“ROMFileMaker.exe” provided by WIZnet. Refer to “ROM File Maker Manual Vx.x.pdf” for further

information.

HTTP Request message can be divided into Method and Request-URI by parse_http_request() and stored in

„st_http_request‟ Date Type which is defined in <Table 3-31>. It gets the requested URI Type with

get_http_uri_type().

<Table 3-30: “st_http_request” Data>

#define MAX_URI_SIZE (2048 - sizeof(char)*2)

typedef struct _st_http_request
{
 u_char METHOD; /* request method(METHOD_GET...). */
 u_char TYPE; /* request type(PTYPE_HTML...). */
 char URI[MAX_URI_SIZE]; /* request file name. */
}st_http_request;

nexttok == NULL

Get a Method Token

nexttok = strtok(buf,SP)

parse_http_request()

Y

NGET HEAD POST

request->method =

METHOD_GET
request->method =

METHOD_HEAD

request->method =

METHOD_POST

Get a Request-URI Token

nexttok = strtok(NULL,SP)

nexttok == NULL
request->method =

METHOD_ERR

Copy nexttok to request->URI RETURN

N N

N

Y Y Y

Y

N

Get a Request-URI Token

nexttok = strtok(NULL,’\0')

<Fig 3.20: parse_http_request()>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

62

<Fig 3.21: find_http_uri_type()>

Request-URI which is saved in URI [MAX_URI_SIZE] of st_http_request has URI Name before “?” symbol

and Query String after “?” sign. When Request-URI is transferred from Web Browser to Web Server, SP

(Space) text is transmitted in the form of „+‟ and, other Reserved Texts are transmitted in the form of

“%HEXHEX.” Accordingly, Reserved Texts in Request-URI needs to be decoded to the previous value, from

„+‟ to SP and from %HEXHEX to related ASCII vales. For the details of Request-URI decoding, refer to

RFC1738. URI name of Request-URI is extracted with get_http_uri_name().Query String of Request-URI can

include one or more “variable=value” pair that has “&” as a separator. Through function

get_http_param_value(), it can extract the wanted variable value in Query String.

<Fig 3.22: get_http_uri_name() & get_http_parse_value()>

CGI processing of Web Server Program at EVB B/D is different from general Web Server Program which is

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

63

based on OS. Web Server Program which is based on OS creates separate process to take case of

communication between processes independently. However, Web Server of EVB B/D is OS-less, so, instead

of making independent process, it calls relevant functions to deal directly with CGI processing. EVB B/D

supports “NETCONF.CGI” which updates Network Information and “LCDNLED.CGI” which controls text LCD,

D1/D2 LED of EVB B/D. <Fig 3.23> and <Fig 3.24> shows both CGI processing.

<Fig 3.23: NETCONF.CGI Processing>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

64

<Fig 3.24: LCDNLED.CGI Processing>

<FORM> of NETCONF.CGI is submitted in “POST” Method. <FORM> submitted using “POST” Method is not

submitted in Query String but submitted in Entity Body of HTTP Request Message. Such value of parameter

for NETCONF.CGI, also, is used to extract related parameter value using get_http_param_value().

<FORM>of LCDNLED.CGI is submitted in “GET” Method and <FORM> submitted as “GET” Method is

submitted in Query String of Request-URI. Parameters submitted by Query String of Request-URI can also

extract parameter value using get_http_param_value().

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

65

<Table 3-31: Reference Functions in web_server()>

Function Name Description Location

void web_server(u_char ch) Web Server Program app/webserver.c

void proc_http(SOCKET s,

u_char * buf, int length)

Processes HTTP Message using related

socket

app/webserver.c

u_int replace_sys_env_value

(u_char* base, u_int len)

Change Pre-defined System

Environment Variables in HTTP

Response Message to Real Values.

app/webserver.c

void parse_http_request

(st_http_request *, u_char *)

Analyzes and processes HTTP Request

Message and saves it in st_http_request

structure.

inet/httpd.c

void find_http_uri_type

(u_char *, char *)

Gets MIME Type of HTTP Request

Message.

inet/httpd.c

char* get_http_uri_name

(char* uri)

Gets Request-URI Name of HTTP

Request Message.

inet/httpd.c

char* get_http_param_value

(char* uri, char* param_name)

Gets Relevant Parameter Value in

Query String of Request-URI

inet/httpd.c

void unescape_http_uri(char *

url)

Transforms Escape Character inet/httpd.c

void make_http_response_head

(char *, char, u_long)

Creates header of HTTP Response

Message

inet/httpd.c

uint8 getSn_SR(SOCKET s) Informs the socket status iinChip/w5100.c

uint16 getSn_RX_RSR(SOCKET

s)

size of data transmittable, and received

data

iinChip/w5100.c

u_char socket(SOCKET s,

u_char protocol, u_int port,

u_char flag)

Creates related socket as TCP/UDP/IP iinChip/socket.c

void listen(SOCKET s) Puts the related socket in Server Mode iinChip/socket.c

u_int send(SOCKET s,

const u_char * buf, u_int len)

Sends data using connected socket iinChip/socket.c

u_int recv(SOCKET s,

u_char * buf, u_int len)

Receives data from the data from the

connected socket

iinChip/socket.c

void disconnect(SOCKET s) Closes the connection of the socket iinChip/socket.c

void replacetochar(char * str,

char oldchar, char newchar)

Changes the special characters in text

rows into new characters.

util/util.c

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

66

3.2.6.5. DHCP Client

DHCP Client program is a program that assigns the network information from DHCP server in the network.

Note that DHCP Client program must be started prior to other programs because it manages Network

Information setup. First, review basic facts on DHCP(Dynamic Host Configuration Protocol) and get further

into the usage of DHCP Client program.

DHCP uses UDP protocol in Transport Layer and communicates with DHCP server using broadcast of UDP.

The reason why it uses broadcast is because it has no IP address and the IP address of server is unknown.

When UDP broadcast at W5100, destination IP address needs to be set ‟255.255.255.255‟ for broadcast

packet transmission.

<Fig 3.25> is a Message Flow between DHCP Server and Client.

<Fig 3.25: DHCP Message Flow>

First of all, DHCP client broadcasts DISCOVERY message to the local Network. If DHCP server exists at the

network then DHCP server receives Discovery message and provides network Information such as IP, G/W

IP, Subnet Mask, and DNS sever IP which can be used by DHCP Client, and information such as Lease

Time to the DHCP Client as OFFER message. DHCP Client can detect DHCP server by receiving the

OFFER message and then it sends REQUEST message to DHCP server to use the information suggested

by DHCP server. After receiving REQUEST message from DHCP Client, DHCP server finds out if the

requested network information is usable. If it is, it sends ACK message, if not, NACK message is sent to

DHCP Client. After receiving ACK message from DHCP server, DHCP Client uses the offered network

information. The network information is valid only for the Lease Time suggested by DHCP server. Hence, if

DHCP Client wants to keep using the network information, it retransmits REQUEST message to DHCP

server to maintain network information usually after half of the Lease Time. In this process, DHCP client can

get same or new network information from DHCP server. In case that it receives new network information,

the new one must be used.

Message between DHCP server and client has the format as in <Fig 3.26> with the size of 544 Bytes. Refer

to document „RFC1541‟ for detailed explanation for each field of DHCP message Format. op Field of the first

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

67

byte decided Request/Reply, and fields after ciaddr is used to deliver network information, and options field

of 312 byte is used to transmit message type or the information such as Client Identifier.

<Fig 3.26: DHCP Message Format>

<Table 3-32: DHCP Message Data Type>

typedef struct _RIP_MSG
{
 u_char op; // DHCP_BOOTREQEUST or DHCP_BOOTREPLY
 u_char htype; // DHCP_HTYPE10MB
 u_char hlen; // DHCP_HLENETHERNET
 u_char hops; // DHCP_HOPS
 u_long xid; // DHCP_XID
 u_int secs; // DHCP_SECS
 u_int flags; // DHCP_FLAGSBROADCAST
 u_char ciaddr[4];
 u_char yiaddr[4];
 u_char siaddr[4];
 u_char giaddr[4];
 u_char chaddr[16];
 u_char sname[64];
 u_char file[128];
 u_char OPT[312];
}RIP_MSG;

DHCP Message of <Fig 3.26> is managed by RIP_MSG Data Type defined in <Table 3-33>. Refer to

“inet/dhcp.h”

To take a brief look at the Option Field of DHCP Message, Option Field has the format of <Fig 3.27>, it

contains Magic Cookie Field, a Lease Identification Cookie with the size of 4 Byte and Code Set ranged from

Code 0 to Code 255. From Code1 to Code 254, codes are composed of pairs of {Code, Len, Value}, and

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

68

Code 0 and Code 255 are composed of {Code} only. For further explanation of each Code of Option Field,

refer to RFC1533.

<Fig 3.27: DHCP Message’s Option Field Format>

<Table 3-33: DHCP Message Option Code Definition>

Code Enumeration Type Description

0 padOption used to cause subsequent fields to align on word boundaries

1 subnetMask specifies the client's subnet mask

3 routersOnSubnet a list of IP addresses for routers on the client's subnet

6 dns specifies a list of DNS servers available to the client

12 hostName specifies the name of the client

50 dhcpRequestedIPaddr request that a particular IP address be assigned by the server

51 dhcpIPaddrLeaseTime a lease time for the IP address

53 dhcpMessageType used to convey the type of the DHCP message

54 dhcpServerIdentifier the IP address of the selected server

55 dhcpParamRequest request values for specified configuration parameters

61 dhcpClientIdentifier specify client unique identifier

255 endOption marks the end of valid information

In the Option Field of 312 Bytes, the unused bytes are denoted with 0‟s padding.

<Table 3-34> is defined as enumeration data type in “inet/dhcp.h” and shows most common Option Codes

that are used in DHCP Client Program.

Other codes that are not defined in <Table 3-34> are skipped from DHCP Client Program.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

69

The operation of DHCP Client Program is displayed in EVB B/D‟s main(). Refer to <Fig 3.3>.

First, set up the MAC address to be used by DHCP Client at the initialization. MAC address is unique

address for all the devices in the network. MAC address is most basic address in Network communication

and necessary information to recognize DHCP Clients in DHCP Server. For MAC Address of DHCP Client

program, it sets up SRC_MAC_ADDR which is global variable of DHCP client using the MAC Address of

EVB B/D. By calling init_dhcp_client() after setup of SRC_MAC_ADDR, it can register two functions to be

called in case of collision of the IP received from DHCP Server and in case of renewal the IP from DHCP

Server.

When calling init_dhcp_client(), if each function is not specified, set_DHCP_network() and proc_ip_conflict()

of DHCP Client Program respectively.

<Fig 3.28: init_dhcp_client()>

When network information is renewed or IP collision occurs, register evb_soft_reset() to run auto reset for

EVB B/D.

Second, Network Information acquirement can be done through getIP_DHCPS().

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

70

getIP_DHCPS()

dhcp_state != STATE_DHCP_LEASED

Find a DHCP Server

send_DHCP_DISCOVER()

dhcp_state = STATE_DHCP_DISCOVER

Reset timeout value & retry count

reset_DHCP_time()

Set Timer for DHCP Client

set_timer(1s)

RETURN Success

N

DHCP_Timeout = 0

DHCP_Timeout == 1
Kill Timer for DHCP Client

kill_timer()

Check dhcp_state

dhcp_state =

check_DHCP_state()

N

Y

Y

RETURN Fail

<Fig 3.29: getIP_DHCPS()>

getIP_DHCPS() initializes W5100 using setIP(),setMACAddr(),and etc, and it initializes „dhcp_state‟ variable

as DHCP client program state to „STATE_DHCP_DISCOVER‟. After the initialization, it calls

send_DHCP_DISCOVER() to transfer a DHCP DISCOVERY message to DHCP server.

After transmitting DISCOVERY DHCP message, it initializes timer variables which are the leased time of

network information received from DHCP server by calling reset_DHCP_time() and uses „DHCP Timer‟ for 1-

sec interval using set_timer(). After the initialization of DHCP_Timeout with 0, it waits for DHCP message to

be received from DHCP server as long as the „DHCP_WAIT_TIME‟ defines and as many as the

„MAX_DHCP_RETRY‟defines. While waiting for „DHCP_WAIT_TIME & MAX_DHCP_RETRY‟ time, it

continuously checks if dhcp_state is changed to STATE_DHCP_LEASED through check_DHCP_state().

STATE_DHCP_LEASED state represents the network information and means that getIP_DHCP() is done

successfully. If network information is not obtained from DHCP Server during the waiting time for

„DHCP_WAIT_TIME & MAX_DHCP_RETRY‟, check_DHCP_state() sets DHCP_Timeout to 1. When

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

71

DHCP_Timeout is 1, getIP_DHCPS() returns failure after releasing the DHCP Timer.

When it failed to obtain network information from DHCP server, EVB B/D sets network configuration using

default network information or previously obtained network information.

<Table 3-35> is a definition of State, Timeout , and Retry Count of DHCP Client.

<Table 3-34: DHCP Client State & Timeout Definition>

Define Description

#define STATE_DHCP_DISCOVER 1 DISCOVERY Transmission

#define STATE_DHCP_REQUEST 2 OFFER Receiving & REQUEST Transmission

#define STATE_DHCP_LEASED 3 ACK Receiving, Acquiring Network Information

#define STATE_DHCP_REREQUEST 4 After obtaining Network Information, REQUEST

Retransmission

#define STATE_DHCP_RELEASE 5 RELEASE Transmission

#define MAX_DHCP_RETRY 3 Number of Same DHCP Message Transmission, 3

times

#define DHCP_WAIT_TIME 5 Waiting time for receiving DHCP Message, 5 sec.

At getIP_DHCP(),„DHCP_XID‟ is variable to set up xid Field of DHCP message in <Fig 3.26: DHCP Message

Format>, it must be unique and maintain the same value until Lease Time of network information is expired.

DHCP_XID is fixed with „0x12345678‟ on here, but it‟s recommended to use the random value.

Be advised to set source IP address as „0.0.0.0.‟ when initializing W5100 for communication with DHCP

server. You can use any IP address to set Source IP address of W5100, but using „0.0.0.0‟ is better because

„0.0.0.0‟ corresponds to Class A in IPv4 addressing and it‟s a Null IP address that is not actually used. For

this reason, there is no chance for collision with other network.

For DHCP server to transmit UDP broadcast packet, note that Flag field MSB of DHCP message must be set

1. Refer to <Fig 3.26: DHCP Message Format>.

<Table 3-36> is a part of code that sets up Flag field

<Table 3-35: DHCP Message Flag Field Setup>

#define DHCP_FLAGSBROADCAST 0x8000

pRIPMSG->flags = htons(DHCP_FLAGSBROADCAST);

Third, management of network information obtained from DHCP server can be performed by

check_DHCP_state(). <Fig 3.30> shows DHCP message flow due to DHCP client state change in the

check_DHCP_state() process.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

72

<Fig 3.30: DHCP Message Flow by DHCP Client State>

check_DHCP_state() checks if there is DHCP message from DHCP server. It receives and analyzes DHCP

message. Accoridng to the types of analyzed DHCP message, if it‟s DHCP message that can be receivable,

it changes to next state after it changes DHCP Client State as shown DHCP Message Flow of <Fig 3.30>.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

73

check_DHCP_state()

Declare & Initialize Local Variables

u_int len

u_char type = 0

len > 0

N

Receive & Analyze

type = parseDHCPMSG()

Y

dhcp_state

==

STATE_DHCP_DISCOVER

STATE_DHCP_REQUEST

STATE_DHCP_LEASED

STATE_DHCP_REREQUEST

STATE_DHCP_RELEASE

type==DHCP_OFFER
Broadcast DHCP_REQUEST

send_DHCP_REQUEST()

dhcp_state =

STATE_DHCP_REQUEST

Check timeout

check_DHCP_Timeout()
END

lease_time == finite

&&

 lease_time/2 < dhcp_time

type = 0

OLD_SIP = GET_SIP

DHCP_XID++

Broadcast DHCP_REQUEST

send_DHCP_REQUEST()

dhcp_state =

STATE_DHCP_REREQUEST

Reset timeout & retry_count

reset_DHCP_time()
END

type==DHCP_ACK

type==DHCP_NAK

Reset timeout & retry_count

reset_DHCP_time()

Check IP Conflict

check_leasedIP()

IP Conflict ?

dhcp_state =

STATE_DHCP_DISCOVER

Reset timeout & retry_count

reset_DHCP_time()

END

type==DHCP_ACK

type==DHCP_NAK

OLD_SIP != GET_SIP

Update the Network Information

set_DHCP_network()

dhcp_state =

STATE_DHCP_LEASED

Reset timeout & retry_count

reset_DHCP_time()

dhcp_state =

STATE_DHCP_DISCOVER

Reset timeout & retry_count

reset_DHCP_time()

Check timeout

check_DHCP_Timeout()
END

END

Y

N

Y

N

Y

N

Y

N
N

Y

Y

N

Y

N

Y

N

Y Y

Y
N

N

N

N

Y

len = getSn_RX_RSR(s)

Update the Network Information

set_DHCP_network()

dhcp_state =

STATE_DHCP_LEASED

Check timeout

check_DHCP_Timeout()

Y

N

<Fig 3.31: check_DHCP_state()>

check_DHCP_state() processes correspondingly with DHCP client state through the series of processes

shown in <Fig 3.31>. If we take a look at DHCP_STATE_LEASED state at check_DHCP_state(), the Lease

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

74

Time received from DHCP server is finite, in case that half of the Lease Time passed, it sends

DHCP_REQEUST Message to DHCP Server and changes it as DHCP_STATE_REREQUEST after it backs

up the source IP. As it continuously transmits DHCP_REQUEST to the server, network information is

maintained.

<Fig 3.32: parse_DHCPMSG() & check_DHCP_Timeout()>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

75

parseDHCPMSG() receives DHCP message from DHCP server, categorizes Type of DHCP Message, and

saves network information. When performing check_DHCP_state(), check_DHCP_Timeout() is called in case

that DHCP message is not received during the DHCP_WAIT_TIME or received DHCP message from DHCP

server is not expected, to retransmit DHCP message to DHCP server. If the retransmission of DHCP

message is repeated as much as MAX_DHCP_RETRY, it transmits DHCP_DISCOVER message to DHCP

server after it initializes all the variables to start the connection of DHCP server and DHCP message.

<Table 3-36: Reference Functions in DHCP Client>

Function Name Description Location

void init_dhcp_client(SOCKET s,

void (*ip_update)(void),

void (*ip_conflict)(void))

Initializes DHCP Client inet/dhcp.c

u_int getIP_DHCPS(void) Obtains network information from

the server

inet/dhcp.c

void check_DHCP_state(SOCKET s) Manages network information

obtained from DHCP Server

inet/dhcp.c

void set_DHCP_network(void) Applies network information

obtained from DHCP server to

W3150A
+
.

inet/dhcp.c

char parseDHCPMSG

(SOCKET s, u_int length)

Analyzes and processes DHCP

message

inet/dhcp.c

void check_DHCP_Timeout(void) Retransmits the DHCP message

when DHCP connection Timeout

occurs

inet/dhcp.c

char check_leasedIP(void) Check if the IP obtained from DHCP

server is faced with collision.

inet/dhcp.c

void reset_DHCP_time(void) Initializes DHCP Timer related

variables.

inet/dhcp.c

void DHCP_timer_handler(void) DHCP Timer Handler inet/dhcp.c

void send_DHCP_DISCOVER

(SOCKET s)

Transmits DHCP_DISCOVER

message to DHCP server.

inet/dhcp.c

void send_DHCP_REQUEST

(SOCKET s)

Transmits DHCP_REQUEST

message to DHCP server.

inet/dhcp.c

void

send_DHCP_RELEASE_DECLINE

(SOCKET s,char msgtype)

Transmits

DHCP_DISCOVER/DHCP_DECLIN

E message to DHCP server

inet/dhcp.c

u_int init_dhcpc_ch(SOCKET s) Creates DHCP client socket. inet/dhcp.c

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

76

uint8 getSn_SR(SOCKET s) Informs status of socket iinChip/w5100.c

uint16 getSn_RX_RSR(SOCKET s) size of data transmittable, and

received data

iinChip/w5100.c

u_char socket(SOCKET s,

 u_char protocol, u_int port, u_char

flag)

Creates sockets as TCP/UDP/IP iinChip/socket.c

u_int sendto(SOCKET s, const

u_char * buf, u_int len, u_char * addr,

u_int port)

Transmits data through specific port

of specific Destination

iinChip/socket.c

u_int recvfrom(SOCKET s, u_char *

buf,

u_int len, u_char * addr, u_int * port)

Receives data through any port of

any destination.

iinChip/socket.c

void close(SOCKET s) Closes the Socket iinChip/socket.c

3.2.6.6. DNS Client

Let‟s take a brief look at the DNS(Domain Name System) before DNS Client setup is introduced.

DNS is a system that transforms Internet Domain Name to Internet IP Address or Internet IP Address to

Internet Domain Name. DNS is composed of Name Server that contains mapping table between IP Address

and Domain Name, and DNS resolver that receives query results by transmitting query to Name Server.

DNS resolver queries IP address or Domain Name to be transformed to local Name Server. Local Name

Server which received the Query searches its DB and answers back to the Resolver. If Resolver cannot find

the information it looks up, Local Name Server sends the received query to Name Server at higher layer and

the received answer can be sent to the Resolver.

<Fig 3.33: Domain Name System Structure & DNS Message Flow>

As seen in <Fig 3.33>, DNS Query and DNS Answer Message transmittable between DNS Resolver and

Name Server are composed of 5 Sections in <Fig 3.34>.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

77

<Fig 3.34: DNS Message Format>

Header Section has fixed 12 Bytes length and the other 4 sections have variable lengths. Answer, Authority,

Additional Section other than Header and Question Section are called Resource Records(RRs). Each of

Header, Question, and RRs has different format.

<Fig 3.35: Header Section Format>

<Fig 3.36: Question Section Format>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

78

<Fig 3.37: Recode Resources Format>

Header Section of DNS Message holds type of Message, DNS Query type, and count information on

variable length section.

In <Fig 3.35: Header Section Format>, QR field gets 0 when DNS Message is a request from Resolver to

Name Server and gets 1 when it‟s from Name Server to Resolver. Opcode Field gets 0 when it queries

Domain Name as IP Address and gets 2 when it queries Name Server status.

QDCOUNT, ANCOUNT, NSCOUNT, and ARCOUNT Field, count information for variable length, represent

Block Count that is composed of Question, Answer, Authority, and additional section. Question section is

made of blocks shown in <Fig 3.36: Question Section Format>. Answer, Authority, and Additional Sections

are composed of blocks shown in <Fig 3.37>.

For example, if QDCOUNT is 1, ANCOUNT is 10, NSCOUNT is 10, and ARCOUNT is 10 then Question

Section is composed of block 1 of <Fig 3.36: Question Section Format>. Answer, Authority, and Additional

Section are composed of 10 blocks shown in <Fig 3.37>.

NAME of <Fig 3.37>, QNAME Filed of <Fig 3.36> and RDDATA Field also get variable lengths. QNAME and

NAME are variable length fields which are composed of <Fig 3.36> Format and they process each field.

RDDATA, variable length field, processes using the data length of RDLENGTH Field.

For further details, refer to RFC1034 and RFC1035

DNS Message is operated by Data Type defined in <Table 3-38>. Refer to “inet/dns.h”

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

79

<Table 3-37: DNS Message Data Type>

/* Header Section */
typedef struct _DHDR
{
 u_int id; /* Identification */
 u_char flag0;
 u_char flag1;
 u_int qdcount; /* Question count */
 u_int ancount; /* Answer count */
 u_int nscount; /* Authority (name server) count */
 u_int arcount; /* Additional record count */
}DHDR;

/* Question Section */
typedef struct _QUESTION
{
// char* qname; // Variable length data
 u_int qtype;
 u_int qclass;
}DQST;

/* Resource Records */

typedef struct _RESOURCE_RECORD

{

// char* _name; // Variable length data

 u_int _type;

 u_int _class;

 u_long _ttl;

 u_int _rdlen;

// char* _rdata; // Variable length data

}DRR;

DNS Resolver works based on gethostbyaddr() and gethostbyname(). gethostbyaddr() transforms Internet IP

Address to Internet Domain Name and gethostbyname() transforms Internet Domain Name to Internet IP

Address. gethostbyaddr() and gethostbyname() test the setup of DNS Name Server IP Address and search

free channels of W5100 needed for connection with DNS Name Server. If a free channel of W5100 exists,

gethostbyaddr() and gethostbyname() call dns_query() with „BYNAME‟ or „BYIP‟ as the elements.

For examples of gethostbyaddr() and gethostbyname(), refer to Chapter 3.2.5.3 Ping Request Program.

Actual connection with DNS Name Server is performed through dns_query(), and gethostbyaddr() and

gethostbyname() are reporting only the result of dns_query().

<Table 3-38: Query Type Definition at dns_query()>

typedef enum _QUERYDATA{BYNAME,BYIP}QUERYDATA; /* Query type */

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

80

gethostbyaddr()

NetConf.dns == 0

||

NetConf.dns == 0xFFFFFFFF

Declare Local Variables

SOCKET s

Get the network information of EVB

get_netconf(&NetConf)

N

Y
DNS Server IP

Addess is not

Configued

Find a Free channel

getSocket(SOCK_CLOSED)

Found?
Not found a

Free Socket

Communicate with the DNS Server

dns_query(s,&hostip,BYIP)

RETURN 1

Success?

Fail to

communicate

with the Server

RETURN 0

RETURN 0

Y

N

Y

N

gethostbyname()

NetConf.dns == 0

||

NetConf.dns == 0xFFFFFFFF

Declare Local Variables

SOCKET s

Get the network information of EVB

get_netconf(&NetConf)

N

Y
DNS Server IP

Addess is not

Configued

Find a Free channel

getSocket(SOCK_CLOSED)

Found?
Not found a Free

Socket

Communicate with the DNS Server

dns_query(s,&hostip,BYNAME)

RETURN 1

Success?

Fail to

communicate

with the Server

RETURN 0

RETURN 0

Y

N

Y

N

<Fig 3.38: gethostbyaddr() & gethostbyname()>

dns_query() initializes the buffer that is needed for DNS inter-working and creates QNAME of Question

Section based on Query Type „BYNAME‟, and „BYIP.‟ If the Query Type is „BYNAME,‟ that is, when querying

the Domain Name with IP Address, Domain Name can be used as QNAME without transformation.

When Query Type is „BYIP,‟ that is, when querying the Domain Name with IP Address, change IP Address to

IP Address String and QNAME is used after adding “in-addr.arpa” to the changed IP Address String. After

the creation of QNAME, UDP Socket is created for DNS inter-working and DNS Request Message is created

by calling dns_make_query(). If DNS Request Message is created successfully DNS Request Message is

sent to DNS Name Server through UDP Socket. After sending DNS Request Message it receives DNS

Response Message or waits until the waiting time is expired.

If DNS response message is received from DNS name server during the waiting time, it analyzes received

DNS response message using dns_parse_response(). dns_query() returns IP Address or Domain Name

depending on Query Type.

<Fig 3.39> is dns_query()‟s process map

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

81

<Fig 3.39: dns_query()>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

82

<Fig 3.40: dns_makequery()>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

83

dns_makequery() creates DNS Request message to be sent to DNS Name Server. Since DNS Request

Message can query only with Header, Question Section, RRs Sections is not needed to be created. If you

examine the header section creation at dns_makequery(), first, it sets ID Field values as any value in DNS

Message inter-working. On here, ID is set with 0x1122, and for further inter-working, the value is incremented

by 1. QR, Opcode, AA, TC, RD Field are set as QR_QUERY, OP_QUERY/OP_IQUERY, 0, 0, 1 respectively

through MAKE_FLAG0(), and RA, Z, RCODE Field are set as 0, 0, 0 respectively through MAKE_FLAG1().

<Table 3-39: Constants and MACRO used in Header Section>

#define QR_QUERY 0

#define QR_RESPONSE 1

#define OP_QUERY 0 /* a standard query (QUERY) */

#define OP_IQUREY 1 /* an inverse query (IQUERY) */

#define OP_STATUS 2 /*a server status request (STATUS)*/

#define MAKE_FLAG0(qr, op, aa, tc, rd)

(((qr & 0x01) << 7) + ((op & 0x0F) << 3) + ((aa & 0x01) << 2) + ((tc & 0x01) << 1) + (rd & 0x01))

#define MAKE_FLAG1(ra, z, rcode)

(((ra & 0x01) << 7) + ((z & 0x07) << 4) + (rcode & 0x0F))

Since the count fields, QDCOUNT, ANCOUNT, NSCOUNT, and ARCOUNT, have only one question, each is

set as 1, 0, 0, 0 respectively.

Let‟s look at Question Section. QNAME Field is the field that sets IP Address string. Domain Name and IP

Address string are composed of label length of 1 byte and label of MAX 63 Byte. The end of QNAME is

always set with 0 to find out the variable length of QNAME. <Fig 3.41> is actual example of transformation of

Domain Name “www.wiznet.co.kr” in QNAME field.

<Fig 3.41: Example of QNAME Field transformation of Question Section >

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

84

QTYPE Field of Question Section is set „TYPE_PTR‟, when it holds Domain Name as QNAME. When it‟s IP

address, it‟s set as „TYPE_A‟, and QCLASS field is set as „CLASS_IN‟ since it is included in Internet.

Table 3-41 is definition of constants that are used in QTYPE & QCLASS Fields.

<Table 3-40 : Constants Definition at QTYPE & QCLASS Field>

Definition Description

#define TYPE_A 1

#define TYPE_NS 2

#define TYPE_MD 3

#define TYPE_MF 4

#define TYPE_CNAME 5

#define TYPE_SOA 6

#define TYPE_MB 7

#define TYPE_MG 8

#define TYPE_MR 9

#define TYPE_NULL 10

#define TYPE_WKS 11

#define TYPE_PTR 12

#define TYPE_HINFO 13

#define TYPE_MINFO 14

#define TYPE_MX 15

#define TYPE_TXT 16

#define QTYPE_AXFR 252

#define QTYPE_MAILB 253

#define QTYPE_MAILA 254

#define QTYPE_TYPE_ALL 255

The ARPA Internet

an authoritative name server

a mail destination (Obsolete - use MX)

a mail forwarder (Obsolete - use MX)

the canonical name for an alias

marks the start of a zone of authority

a mailbox domain name

a mail group member

a mail rename domain name

a null RR

a well known service description

a domain name pointer

host information

mailbox or mail list information

mail exchange

text strings

A request for a transfer of an entire zone

A request for mailbox-related records

A request for mail agent RRs

A request for all records

#define CLASS_IN 1

#define CLASS_CS 2

#define CLASS_CH 3

#define CLASS_HS 4

#define QCLASS_ANY 255

Internet

CSNET class

CHAOS class

Hesiod [Dyer 87]

Any class

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

85

<Fig 3.42: dns_parse_response()>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

86

dns_parse_response() of <Fig 3.42> analyzes Response Message received by DNS Name Server.

dns_parse_response() checks if it‟s same as Request Message ID that was sent to DNS Name Server and it

also checks if the message received is a response message by checking QR Field of Header Section. If the

received message is response from DNS Name Server, the success of change is decided by checking the

RCODE Field value of Header Section.

<Table 3-42> is definition of constants that are used in RCODE Field.

<Table 3-41 : Constant Definition at Header Section’s RCODE Field>

Definition Description

#define RC_NO_ERROR 0 No error condition

#define RC_FORMAT_ERROR 1 Format error - The name server was unable to interpret

the query

#define RC_SERVER_FAIL 2 Server failure - The name server was unable to process

this query due to a problem with the name server

#define RC_NAME_ERROR 3 Name Error - Meaningful only for responses from an

authoritative name server, this code signifies that the

domain name referenced in the query does not exist.

#define RC_NOT_IMPL 4 Not Implemented - The name server does not support

the requested kind of query.

#define RC_REFUSED 5 Refused - The name server refuses to perform the

specified operation for policy reasons.

If the RCODE is RC_NO_ERROR, variable length sections such as Question, Answer, Authority, and

Additional Section are analyzed. Since the necessary information is set in Answer Section, it‟s analyzed and

processed, and other section analysis and process are not performed. If you need information on Authority

and Additional Section, you can get them easily on your own.

Question Section is processed as many as QDCOUNT of Header Section by calling dns_parse_question().

Answer Section is processed as many as ANCOUNT of Header Section by calling dns_parse_question().

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

87

<Fig 3.43: dns_parse_question() & dns_answer()>

dns_parse_question() analyses and processes Question Section. There is no information that actually used

in the Question Section of DNS Request Message, but it must be processed to get the starting position of

Answer Section. Since QNAME Field of Question Section gets variable length, parse_name() processes

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

88

QNAME Field to process the variable length processes and QTYPE, and QCLASS Field are skipped.

dns_answer() analyzes and processes Answer Section. Answer Section is a section where transformation

actually takes effects and it performs appropriate process to TYPE Field of Answer Section.

TYPE of Answer Section has one of values from <Table 3-41 : Constants Definition at QTYPE & QCLASS

Field> and the value comes from either TYPE_A or TYPE_PTR. In case that the Domain Name is changed

to IP Address, it can get the changed IP Address from TYPE_A and if the IP Address is changed to Domain

Name, Domain Name can be obtained from TYPE_PTR. Changed Domain Name or IP Address are also

processed and extracted by parse_name().

<Fig 3.44: parse_name()>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

89

parse_name() processes QNAME Field of Question Section or NAME, RDDATA Field of RRs Section.

QNAME, NAME, RDDATA Field are mostly composed as in <Fig 3.41: Example of QNAME Field

transformation of Question Section >. However, it can be compressed to reduce DNS Message Size.

Compression scheme is expressed in 2 Byte. If the first byte - the upper 2 bits are ‟11,‟ it means the Label is

compressed. It has the offset that is composed of 1
ST

 Byte excluding upper 2 bits and 2
nd

 Byte

This offset is Offset of DNS Message and means the actual value of Label is located by the offset from the

starting point of DNS message. When Compress Scheme tries to reuse Domain Name that was already

used in DNS Message, relevant Domain Name sets the offset that is located in DNS Message as Indirect so

that it can reduce the size of DNS Message. <Fig 3.45> is an example of Compress Scheme of DNS

Message and its application.

<Fig 3.45: DNS Message Compression Scheme>

The example of Compression Scheme of <Fig 3.45> shows DNS Message in case of “F.ISI.ARPA”,

“FOO.F.ISI.ARPA”, “ARPA”, and ROOT. “F.ISI.ARPA” is processed in the format of <Fig 3.41: Example of

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

90

QNAME Field transformation of Question Section > with Offset 20 of DNS Message without compression.

In “FOO.F.ISI.ARPA,” since the rest except for “FOO” is same as Name which is previously processed,

“FOO” is processed with <Fig 3.41: Example of QNAME Field transformation of Question Section > Format

without compression and the rest of names is processed by Offset 26. ROOT is the highest Domain and it‟s

processed with Label Length Field of 0.

parse_name(), before analysis of Name, checks if upper 2 bits of Label Length Byte are 11, if it‟s „11‟ the

related Label analyzes the Label at the offset of DNS Message where the Label is located. If it‟s no „11‟ then

the Label is analyzed and processed like as <Fig 3.41: Example of QNAME Field transformation of Question

Section >.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

91

<Table 3-42 : Reference Functions in DNS Client >

Function Name Description Location

int gethostbyaddr

(u_long ipaddr,char* domain)

Changes IP Address to Domain Name inet/dns.c

u_long gethostbyname

(char* hostname)

Changes Domain Name to IP Address inet/dns.c

u_char dns_query

(SOCKET s, u_long dnsip,

u_char * domain_name,

u_long* domain_ip,

QUERYDATA querydata,

u_int elapse)

DNS Message Processing

inet/dns.c

int dns_make_query

(u_char op,char * qname)

Creates DNS Request Message inet/dns.c

Int dns_parse_reponse(void) Analyzes DNS Response Message inet/dns.c

u_char * dns_parse_question

(u_char * cp)

Analyzes Question Section of DNS

Response Message

inet/dns.c

u_char * dns_answer

(u_char *cp)

Answer Section of DNS Response

Message

inet/dns.c

int parse_name(char* cp,char*

qname, u_int qname_maxlen)

Analyzes NAME Field of Question,

RRs Section

inet/dns.c

uint16 getSn_RX_RSR(SOCKET

s)

size of data transmittable, and

received data

iinChip/w5100.c

u_char socket(SOCKET s, u_char

protocol, u_int port, u_char flag)

Creates sockets as TCP/UDP/IP iinChip/socket.c

u_int sendto(SOCKET s,

const u_char * buf, u_int len,

u_char * addr, u_int port)

Transmits data through specific port of

specific Destination

iinChip/socket.c

u_int recvfrom(SOCKET s,

u_char * buf, u_int len, u_char *

addr, u_int * port)

Receives data through any port of any

destination.

iinChip/socket.c

void close(SOCKET s) Closes the related Socket iinChip/socket.c

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

92

4. Hardware Designer‟s Guide

4.1. Block Diagram

<Fig 4.1: EVB B/D Block Diagram>

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

93

4.2. Block Description

EVB B/D is composed of W5100E01-AVR(EVB Base Board) and PM-A1(AVR MODULE).

Following 9 blocks are components of EVB B/D.

- PM-A1

- LCD

- PAL

- SRAM

- RS232 Port

- Expanded Board Interface

- Power Regulator

- 3.3V Power On System Reset

4.2.1. PM-A1

PM-A1(AVR MODULE) is composed of Atmega128 Processor, 74HC573 for address latch, 8MHz external

crystal and header for interfacing to Base board(JP4,JP5), and ISP(JP3) & JTAG(JP1) Interface.

<Fig 4.2: PM-A1 MODULE Dimension>

For easy development using EVB Board, all the port pin except for /ALE(PG2) are connected to MB-EVB-X2

through module Interface(JP4,JP5). Pin description of Interface is shown in <Table 4-1: PM-A1 MODULE Pin

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

94

Description>.

<Table 4-1: PM-A1 MODULE Pin Description>

PM-A1

MODULE

Header #

Pin # Pin Name Dir. Description

JP4 25

~

32

D0(PA0)

~

D7(PA7)

I/O Databus[0:7] or PA[0:7]

JP5 26

~

33

PB0

~

PB7

I/O PB[0:7]

JP4 3

~

10

A0

~

A7

I/O Address bus[0:7]

JP4 11

~

18

A8(PC0)

~

A15(PC7)

I/O Address bus[8:15] / PC[0:7]

JP5

JP5

JP4

JP4

JP5

JP5

JP5

JP5

42

43

47

45

34

35

36

37

PD0/SCL

PD1/SDA

PD2/RXD1

PD3/TXD1

PD4

PD5

PD6

PD7

I/O PD[0:7]

JP4

JP4

JP5

JP5

JP5

JP5

JP5

JP5

48

46

38

44

23

46

6

8

RXD0

PE1/TXD0

PE2

PE3

PE4/I2CHIP_IRQ

PE5

PE6

PE7

I/O RXD0 is connected with PE0

through 1K ohm resistor.

PE[1:7]

JP5 13

~

20

PF0

~

PF7

I/O PF[0:7]

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

95

JP4

JP4

JP5

JP5

41

42

40

41

/WR(PG0)

/RD(PG1)

PG3/LED_0

PG4/LED_1

I/O PG[0:4] without ALE(PG2)

JP5 4 CPU_RESET I Reset Signal Input process generated

by EVB B/D‟s Reset Switch(SW3).

JP5 1,2 3.3V I 3.3V Power Input.

JP4 1,2 5V I 5V Power Input Not Used.

JP5

JP5

JP5

JP4

10,12,21,

22,45,47,

48,49,50

23,24,49,50

GND Signal Ground

JP5

JP4

3,5,7,9,11,

19,20,21,22

33,34,35,36,

37,38,39,40,

43,44

RES0

~

RES18

 RESERVED LINE

JP5 24

25

39

NC

NC

NC

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

96

AVR ISP (JP3) Pin Mapping

<Table 4-2: ISP Pin Description>

SIGNAL Pin Number I/O Description

VCC 2 - Power is delivered to the AVRISP

GND 3,4,6,8,10 - Ground

PDO 1 Input Commands and data from AVRISP to EVB B/D

PDI 9 Output Data from EVB B/D to AVRISP

SCK 7 Input Serial Clock, Controlled by AVRISP

CPU_RESET 5 Input Reset. Controlled by AVRISP

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

97

4.2.2. LCD

LCD is used for debugging and system status display.

Pin Description of LCD Interface (JP3) is as follows.

<Table 4-3: LCD PIN Description>

PIN#
EVB B/D PIN NAME/

LCD PIN NAME
DIR. Description

1 GND/VSS Signal Ground

2 5V/VDD I LCD Power Supply

3 V0/V0 I Voltage for LCD drive

4 A1/RS I Data/Instruction register select

5 A0/RW I Read/Write

6 LDC_E/E I Enable signal,start data read/write

7

~

14

D0/DB0

~

D7/DB7

I/O Data Bus Line

15 NC1/LED A O LED Anode, power supply+

16 NC2/LED K O LED Cathode,ground 0V

It uses minimum -0.3V and maximum 13V of VDD-V0 at Specification Document of LC1624. To fit the data,

R6(5V Pull Up maximum 10K) and R7(Gnd Pull Down 820R) are used and, in real application, LCD Display

became clear when R6 was adjusted. For details on LC1624, refer to “LC1624 Specifications” document.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

98

4.2.3. PAL

PAL is used to make enable signal of various chip or module that are used for EVB B/D. The PAL element

that is used in the product is ATF16V8B-15PL from ATMEL co. It uses 10 input pins and 8 I/O Pins.

It makes Chip Select or Enable Signal about SRAM(/CS_RAM), LCD(LCD_E), and W5100(/CS_IINCHIP).

The output, PAL_OUT_0~PAL_OUT_4, are set aside for expansion through Expanded Interface.

4.2.4. SRAM

SRAM, with the size of 32Kbytes, is used as external data memory of Atmega128.

4.2.5. RS232 Port

It‟s a interface for Dual Serial USARTs that is supported by Atmega128.

EVB B/D uses 9Pin DSUB male Type(P1,P2) connector.

4.2.6. Expanded Board Interface

Expanded board interface is designed to be developed easily using EVB B/D. Most of the port pin of

Atmega128, output sinal of PAL (PAL_OUT_0~PAL_OUT_4), power and many reserved pin are connected to

Expanded Board Interface.

The Signals of Atmega128 that are not connected to Expanded Board Interface are 7 RXD1(PD2),

TXD1(PD3), RXD0(PE0), TXD0(PE1), LED0(PG3), LED1(PG4), /I2CHIP_IRQ(PE4).

<Table 4-4: Expanded Board Interface Pin Description>

Pin # Pin Name Dir. Description

Bus Interface

66,34,67,35,

68,36,69,37,

70,38,71,39,

73,40,74,41

A0, A1, A2, A3,

A4, A5, A6, A7,

A8, A9, A10,A11

A12,A13,A14,A15

O Parallel Address Bus[0:15]

77,45,78,46

79,47,80,48

D0, D1, D2, D3,

D4, D5, D6, D7

I/O Parallel Data Bus[0:7]

53

86

/RD

/WR

O Parallel Bus Read Strobe

Parallel Bus Write Strobe

25

~

29

PAL_OUT_0

~

PAL_OUT_4

O Reserved Parallel Bus Chip Select / Enable

18 SDA/PD0 I/O I2C Bus Data Line/ Port D0

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

99

19 SCL/PD1 O I2C Bus Clock Line/Port D1

Atmega128 Port Interface

20

21

56

57

58

59

60

61

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

I/O Port B[0:7]

92

93

89

90

PD4

PD5

PD6

PD7

I/O Port D[4:7]

91

22

23

3

5

PE2

PE3

PE5

PE6

PE7

I/O Port E[2:3],

Port E[5:7]

1,2,4,6,

7,75,42,76

43,81,49,83,

50,84,51,85,

52,54,87

RES0~RES3

RES4~RES7

RES8~RES11

RES12~RES15

RES16~RES18

 Not Available

Power Interface

31,32 5V O 5V Power Supply

63,64 3.3V O 3.3V Power Supply

8,9,24,30,44,

55,62,65,72,

82,88,94

GND Ground

No. 8 Pin and GND became Short in AVR

Module.

Expanded Board Interface Connector, which is “PCN10BK-96S-2.54DS” of Hirose co., is a Din Connector

96Pin Female Rightangle Type. Connector of Male Type that is mated here is “PCN10-96P-2.54DS.”

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

100

4.2.7. Power Regulator

EVB B/D gets 5V DC power through power adaptor. The powers used inside the board are 5V and 3.3 V. The

regulator is LT1963EST-3.3(U1). To shut down the regulator, Toggle Switch(SW1) is used.

4.2.8. 3.3V Power On System Reset

Manual reset and Power On Reset is implemented using RC analog circuit.

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

101

4.3. Schematic

4.3.1. W5100E01-AVR

Please refer to “W5100E01-AVR.DSN” in the official website of WIZnet (www.wiznet.co.kr).

4.3.2. PM-A1

Please refer to “PM-A1.DSN” in the official website of WIZnet (www.wiznet.co.kr).

http://www.wiznet.co.kr/
http://www.wiznet.co.kr/

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

102

4.4. PAL

In EVB B/D, PAL creates Chip Select (Module Enable).

The address map of EVB B/D is same as <Fig 3.1: EVB B/D Memory Map>.

The EVB B/D supports 3 enable signal(Chip Select) as shown in the address map of EVB B/D.

EVB B/D provides VHDL Code. For developer who uses PAL element, CUPL is recommended since it is a

freeware PAL Compiler. WINCUPL of ATMEL co. can be used after simple registration.

Use it with “AWINCUPL.EXE” that is downloadable from ATMEL Homepage.

Refer to “AVR Tool Guide.pdf” for usage.

4.4.1. IO Define

The following is VHDL Source code.

The following is CUPL Source code.

entity evb_pal is

 port(

 Addr : in std_logic_vector(15 downto 10);

 nRD : in std_logic;

 nWR : in std_logic;

 nRAMCS : out std_logic;

 nCS_IINCHIP : out std_logic;

 LCDCS : out std_logic

);

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

103

4.4.2. External SRAM Area

External SRAM area is ranged from 0x0000 to 0x7fff.

The following is a VHDL Source Code that makes SRAM CS.

The following is a CUPL Source Code that makes SRAM CS.

4.4.3. LCD Area

LCD is ranged 0x9000 ~ 0x9400.

WR and RD Signal are used together to control the timing.

--nRAMCS (0x0000 - 0x7fff) :

 process(Addr)

 begin

 if (Addr < "100000") then

 nRAMCS <= '0';

 else

 nRAMCS <= '1';

 end if;

 end process;

/* < 0x8000 */

!nCS_RAM = !A15;

/* *************** INPUT PINS *********************/

PIN [1..6] = [A10..15]; /* address upper 6bits */

PIN 7 = nRD; /* read signal */

PIN 8 = nWR; /* write signal */

/* *************** OUTPUT PINS *********************/

PIN 12 = nCS_RAM; /* External SRAM CS */

PIN 13 = LCD_E; /* LCD CS */

PIN 14 = nCS_IINCHIP; /* iinChip CS */

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

104

LCD is High Active Enable Signal.

4.4.4. W5100 Area

In case of W5100, the address is divided into 2 parts about same Chip.

For more details, refer to “W5100 Datasheet”

--LCDCS (0x9000 - 0x93ff)

 process(Addr, nRD, nWR)

 begin

 if (((Addr >= "100100") and (Addr < "100101")) and (nRD = '0' or nWR = '0')) then

 LCDCS <= '1';

 else

 LCDCS <= '0';

 end if;

 end process;

/* 0x9000 <= < 0x9400 */

LCD_E = (A15 & !A14 & !A13 & A12 & !A11 & !A10) & (!nRD # !nWR);

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

105

For VHDL Source Code, refer to “EVB_PAL.VHD” in the official website of WIZnet (www.wiznet.co.kr).

For CUPL Source Code, refer to “EVB_PAL.PLD” in the official website of WIZnet (www.wiznet.co.kr).

Please refer to “AVR Tool Guide.pdf” for compiling.

-- IINCHIP (0x8000 - 0x8800, 0xC000 - 0xFFFF)

process(Addr)

 begin

 if (((Addr >= "100000") and (Addr < "100010")) or (Addr >= "110000")) then

 nCS_IINCHIP <= '0';

 else

 nCS_IINCHIP <= '1';

 end if;

 end process;

/* 0x8000 <= < 0x8800 OR > 0xC000 */

!nCS_IINCHIP = (A15 & !A14 & !A13 & !A12 & !A11) # (A15 & A14);

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

106

4.5. Parts List

4.5.1. W5100E01-AVR Parts List

Please refer to “W5100E01-AVR_PARTLIST.PDF” in the official website of WIZnet (www.wiznet.co.kr).

4.5.2. PM-A1 Parts List

Please refer to “PM-A1_PARTLIST.PDF” in the official website of WIZnet (www.wiznet.co.kr).

http://www.wiznet.co.kr/
http://www.wiznet.co.kr/

© Copyright 2007 WIZnet Co., Ltd. All rights reserved.

WW
55
11

00
00

EE
00
11
-- AA

VV
RR

 UU
ss
ee
rr ’’ ss

 MM
aa
nn

uu
aa
ll

107

4.6. Physical Specification

4.6.1. Power Consumption

Power consumption of each component of EVB B/D is as in the following table.

< Table 4-5 EVB B/D Power Consumption >

Power Level MIN TYP MAX UNIT

5V - 243 - mA

3.3V - 198 - mA

Total Power consumption is 243mA X 5V = 1215mW.

