NLAS3257

Mux / Demux Analog Switch

The NLAS3257 Mux / Demux Analog Switch is an advanced high-speed single pole double throw (SPDT) analog switch in ultra-small footprint.

Features

- High Speed: $\mathrm{t}_{\mathrm{PD}}=0.25 \mathrm{~ns}(\mathrm{Max}) @ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- $\mathrm{R}_{\mathrm{ON}}: 7.5 \Omega$, Typ @ $\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$
- $\mathrm{C}_{\mathrm{ON}}: 7.5 \mathrm{pF}$, Typ @ $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- V_{CC} Range: 1.65 V to 4.5 V
- Ultra-Small 1×1 mm Package
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Mobile Phones, PDAs, Camera

Figure 1. XLLGA6 (Top View)

Figure 2. Logic Diagram

Function Table

Input S	Function
L	$\mathrm{A}=\mathrm{B} 0$
H	$\mathrm{A}=\mathrm{B} 1$

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

er			MARKING DIAGRAM
		$\begin{gathered} \text { XLLGA6 } \\ 1.0 \times 1.0 \\ \text { CASE } 713 A D \end{gathered}$	- LM
	L	= Specific Device Code = Date Code	

ORDERING INFORMATION
See detailed ordering and shipping information on page 6 of this data sheet.

NLAS3257

Table 1. MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +5.5	V
$\mathrm{V}_{\text {IN }}$	Control Input Voltage (S Pin)	-0.5 to +5.5	V
$\mathrm{V}_{1 / \mathrm{O}}$	Switch Input / Output Voltage (A, B0, B1 Pins)	-0.5 to +5.5	\checkmark
IK	Control Pin DC Input Diode Current (S Pin) $\mathrm{V}_{\text {IN }}<$ GND	-50	mA
lok	Switch I/O Port DC Diode Current (A, B0, B1 Pins) $\quad \mathrm{V}_{\text {I/O }}<$ GND or $\mathrm{V}_{\text {I/O }}>\mathrm{V}_{\mathrm{CC}}$	± 50	mA
Io	On-State Switch Current	± 128	mA
	Continuous Current Through V $\mathrm{CC}^{\text {or GND }}$	± 150	mA
ICC	DC Supply Current per Supply Pin	± 150	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 150	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Note 1) XLLGA6	466	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$ (Note 1) XLLGA6	269	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand VoltageHuman Body Mode (Note 2) Machine Mode (Note 3) Charged Device Mode (Note 4)	$\begin{gathered} >6000 \\ >200 \\ \text { N/A } \end{gathered}$	V
ILATCHUP	Latchup Performance Above $\mathrm{V}_{\text {CC }}$ and Below GND at $85^{\circ} \mathrm{C}$ (Note 5)	± 100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2 ounce copper trace no air flow.
2. Tested to EIA/ JESD22-A114-A
3. Tested to EIA/ JESD22-A115-A
4. Tested to JESD22-C101-A
5. Tested to EIA / JESD78.

Table 2. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Positive DC Supply Voltage	1.65	4.5	V
$\mathrm{~V}_{\mathrm{I}}$	Control Pin Input Voltage (S Pin)	0	4.5	V
$\mathrm{~V}_{1 / \mathrm{O}}$	Switch Input / Output Voltage (A, B0, B1 Pins)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Free-Air Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Transition Rise or Fall Rate	Control Input Switch $/ \mathrm{O}$	0 0	20 DC

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 3. DC ELECTRICAL CHARACTERISTICS (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)

Symbol	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
V_{IH}	Control Input, High Voltage (S Pin)		$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \\ & 1.25 \end{aligned}$			V
$\mathrm{V}_{\text {IL }}$	Control Input, Low Voltage (S Pin)		$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$			$\begin{aligned} & \hline 0.3 \\ & 0.4 \\ & 0.5 \end{aligned}$	V
I_{IN}	Control Input, Leakage Current (S Pin)	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$	1.65-4.5		± 0.5	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {B0/B1_OFF }}$	Off State Leakage Current (B0/B1 Pins)	$\begin{gathered} \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ \mathrm{~V}_{\mathrm{BO}} \text { and } \mathrm{V}_{\mathrm{B} 1}=0.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{A}}=4 \mathrm{~V} \end{gathered}$	4.5		± 20	± 100	nA
$\mathrm{I}_{\text {A_ON }}$	On State Leakage Current (A Pin)	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ \mathrm{~V}_{\mathrm{B} 0}=0.3 \mathrm{~V} \text { or } 4 \mathrm{~V} \text { with } \\ \mathrm{V}_{\mathrm{B} 1}=\text { Floating } \\ \text { or } \\ \mathrm{V}_{\mathrm{B} 1}=0.3 \mathrm{~V} \text { or } 4 \mathrm{~V} \text { with } \\ \mathrm{V}_{\mathrm{B} 0}=\text { Floating } \\ \mathrm{V}_{\mathrm{A}}=0.3 \mathrm{~V} \text { or } 4.0 \mathrm{~V} \end{gathered}$	4.5		± 20	± 100	nA
IPower_OFF	Power Off Leakage Current (S Pin)	$\mathrm{V}_{\mathrm{IN}}=0$ or 4.5 V	0			± 100	nA
Icc	Quiescent Supply Current ($\mathrm{V}_{\mathrm{CC}} \mathrm{Pin}$)	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D, \\ & V_{I S}=V_{C C} \text { or } G N D, \\ & I_{\text {Load }}=0 \mathrm{~A} \end{aligned}$	1.65-4.5		0.1	1.0	$\mu \mathrm{A}$
$\Delta \mathrm{I}_{\text {CC }}$	Additional Quiescent Supply Current (VCC Pin)	$\begin{gathered} \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ \mathrm{~V}_{I S}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ \mathrm{I}_{\text {Load }}=0 \mathrm{~A} \end{gathered}$	$\begin{aligned} & \hline 3.3 \\ & 4.2 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 4. ON RESISTANCE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
RON	ON-Resistance	$\begin{gathered} \mathrm{ION}=8 \mathrm{~mA}, \\ \mathrm{~V}_{\text {IS }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & 9.3 \\ & 8.7 \\ & 7.5 \end{aligned}$		Ω
RFLAT	ON-Resistance Flatness	$\begin{gathered} \mathrm{ION}=8 \mathrm{~mA}, \\ \mathrm{~V}_{\text {IS }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & \hline 3.6 \\ & 3.3 \\ & 2.9 \end{aligned}$		Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	Delta ON- Resistance	$\begin{gathered} \mathrm{ION}=8 \mathrm{~mA}, \\ \mathrm{~V}_{\text {IS }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.7 \\ & 0.5 \end{aligned}$		Ω

AC ELECTRICAL CHARACTERISTICS

Table 5. TIMING/FREQUENCY (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$)

Symbol	Parameter	Test Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
$t_{\text {PD }}$	Propagation Delay, A to Bn or Bn to A		1.65-4.5			0.25	ns
ton	Turn-ON Time	(See Figures 4 and 5)	1.65-4.5		12	30	ns
toff	Turn-OFF Time	(See Figures 4 and 5)	1.65-4.5		8.0	25	ns
$\mathrm{t}_{\text {BBM }}$	Break-Before-Make Time	(See Figure 3)	1.65-4.5	2.0			ns
BW	-3 dB Bandwidth	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	1.65-4.5		900		MHz

Table 6. ISOLATION (Typical: $T=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$)

Symbol	Parameter	Test Condition	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
OIRR	OFF-Isolation	$\mathrm{f}=240 \mathrm{MHz}$ (See Figure 6)	1.65-4.5		-21		dB
$\mathrm{X}_{\text {TALK }}$	Non-Adjacent Channel Crosstalk	$\mathrm{f}=240 \mathrm{MHz}$	1.65-4.5		-21		dB

Table 7. CAPACITANCE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$)

Symbol	Parameter	Test Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
$\mathrm{C}_{\text {IN }}$	Control Input Capacitance	S pin			2.0	pF
$\mathrm{Con}^{\text {a }}$	ON Capacitance	$\begin{aligned} & \text { Switch ON } \\ & \text { A to B0 } \\ & \text { A to B1 } \end{aligned}$			7.5	pF
CofF	OFF Capacitance	Switch OFF B0 OFF B1 OFF			2.5	pF

Figure 3. $\mathrm{t}_{\mathrm{BBM}}$ (Time Break-Before-Make)

Figure 4. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 5. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{VIN}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth (BW) = the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω

Figure 6. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$

DEVICE ORDERING INFORMATION

Device	Package	Shipping †
NLAS3257CMX2TCG	XLLGA6 (Pb-Free)	

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

XLLGA6 1.0x1.0, 0.35P
CASE 713AD
ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
CONTROLLING DIMENSION: MILLIMETERS.
2. DIMENSION b APPLIES TO THE PLATED TERMINALS AND IS MEASURED BETWEEN 0.15 AND 0.25 MM AND IS MEASURED BETIES
3. COPLANARITY APPLIES TO ALL OF THE TERMINALS.
4. COPLANARITY APPLIES

	MILLIMETERS			
DIM	MIN	MAX		
A	--	0.40		
A1	0.00	0.05		
b	0.17	0.23		
D	1.00	BSC		
E	1.00			
BSC				
e	0.35			
BSC				
e2	0.60			BSC
L	0.27	0.33		
L1	0.05			REF

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the 101 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the de

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

