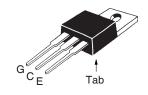
High-Gain IGBT w/ Diode


IXGP30N60B4D1

High-Speed PT Trench IGBT

V _{CES}	=	600V
I _{C110}	=	30A
$\mathbf{V}_{CE(sat)}$	\leq	1.7V
t _{fi(typ)}	=	88ns

TO-220

G = Gate	C = Collector
E = Emitter	Tab = Collector

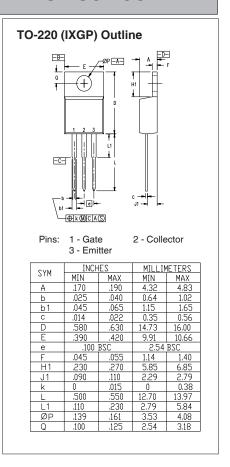
Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C	600	V	
V _{CGR}	$T_J^{\circ} = 25^{\circ}\text{C to } 150^{\circ}\text{C}, R_{GE} = 1\text{M}\Omega$	600	V	
V _{GES}	Continuous	±20	V	
V _{GEM}	Transient	±30	V	
I _{C25}	T _C = 25°C	56	A	
I _{C110}	$T_{\rm C} = 110^{\circ}$ C	30	Α	
I _{F110}	$T_{\rm C} = 110^{\circ}$ C	10	Α	
I _{CM}	$T_{\rm C} = 25^{\circ}$ C, 1ms	156	Α	
SSOA	$V_{GE} = 15V, T_{V,I} = 125^{\circ}C, R_{G} = 10\Omega$	I _{CM} = 48	A	
(RBSOA)	Clamped Inductive Load	$V_{CE} \leq V_{CES}$		
P _c	T _C = 25°C	190	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque	1.13/10	Nm/lb.in.	
Weight		3	g	

Features

- Optimized for Low Conduction and Switching Losses
- Square RBSOA
- Anti-Parallel Ultra Fast Diode
- International Standard Package

Advantages

- High Power Density
- Low Gate Drive Requirement


Applications

- Switch-Mode and Resonant-Mode Power Supplies
- Uninterruptible Power Supplies (UPS)
- DC Choppers
- AC Motor Speed Drives
- DC Servo and Robot Drives
- PFC Circuits

Symbol	Test Conditions	Characteristic Values			
$(T_{J} = 25^{\circ}C, U)$	Inless Otherwise Specified)	Min.	Тур.	Max.	
V _{GE(th)}	$I_{_{\mathrm{C}}}$ = 250 μ A, $V_{_{\mathrm{CE}}}$ = $V_{_{\mathrm{GE}}}$	3.0		5.5	V
CES	$V_{CE} = V_{CES}, V_{GE} = 0V$			10	μΑ
	$T_J = 125^{\circ}C$			500	μΑ
I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
V _{CE(sat)}	$I_{\rm C} = 24A, V_{\rm GE} = 15V, \text{ Note 1}$		1.5	1.7	V
. ,	T _J = 125°C		1.5		V

•	nbol Test Conditions Characteristic Value		Values	
$T_{\rm J} = 25^{\circ}$ C	Unless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}	$I_{\rm C} = 24A, V_{\rm CE} = 10V, \text{ Note 1}$	10	17	S
C _{ies}			860	pF
C _{oes}	$V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$		70	pF
C _{res}			29	pF
Q_g			77	nC
Q _{ne} }	$I_{\rm C} = 24$ A, $V_{\rm GE} = 15$ V, $V_{\rm CE} = 0.5 \cdot V_{\rm CES}$		9	nC
Q _{gc}			33	nC
t _{d(on)}			21	ns
t _{ri}	Inductive Load, T _J = 25°C		34	ns
E _{on}	$I_{\rm C} = 24A, V_{\rm GE} = 15V$		0.44	mJ
t _{d(off)}	$V_{CE} = 400V, R_{G} = 10\Omega$		200	ns
t _{fi}	Note 2		88	ns
E _{off}			0.70	1.30 mJ
t _{d(on)}			20	ns
t _{ri}	Inductive Load, T _J = 125°C		33	ns
E _{on}	$I_{\rm C} = 24A, V_{\rm GE} = 15V$		0.75	mJ
$\mathbf{t}_{d(off)}$	$V_{CE} = 400V, R_{G} = 10\Omega$		288	ns
t _{fi}	Note 2		223	ns
E _{off}			1.50	mJ
R_{thJC}				0.66 °C/W
R _{thCS}			0.50	°C/W

Reverse Diode (FRED)

Symbol	Test Conditions Char	Characteristic Values		6
$(T_J = 25^\circ)$	C, Unless Otherwise Specified) Min.	Тур.	Max.	
V _F	$I_{\rm F} = 10 \text{A}, V_{\rm GE} = 0 \text{V}, \text{Note 1}$		2.66	V
	T _J = 150°C		1.66	V
I _{RM}	$\int I_F = 12A, V_{GE} = 0V,$	2.5		Α
t _{rr}	\int -di _F /dt = 100A/µs, V _R = 100V, T _J = 125°C	110		ns
t _{rr}	$I_F = 1A, V_{GE} = 0V, -di_F/dt = 100A/\mu s, V_R = 30V$	30		ns
R _{thJC}			2.5	°C/W

Notes:

- 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 2. Switching times & energy losses may increase for higher V_{CE} (clamp), T_J or R_g .

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.