

Metal Oxide Varistor	Disc type
motal oxido raniolo:	

SIOV-S10K625G3S3

Ordering code: B72210S0621K331

Data sheet

Form: FBLE3K/b

File name: S10K625G3S3

MODIFICATIONS: New Issue

REMARKS:

Duranandha	0 11: 11 /	· ·		d: PE / Collins-Hunt		signed: QS / Zo	ödl	
Prepared by	Collins-Hunt	Release	signed	i:		signed:		
ISSUE DATE	17.12.02	ISSUE	А	PUBLISHER	K	H PE VAR	PAGE	0/8

Metal Oxide Varistor Disc type

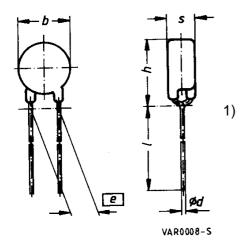
SIOV-S10K625G3S3

Ordering code: B72210S0621K331

Data sheet

SIOV nomenclature:

S = Disk type


10 = Rated disk diameter

K = Tolerance of varistor voltage at $1 \text{ mA} : \pm 10\%$

625 = Max. operating voltage V_{rms}

G3 = Taping Style G3 S3 = Crimp style S3

Figure: Dimensions given in Millimeters (mm)

- seating plane in accordance with IEC 60717
- 2) measured above carrier tape

Electrical data:

Maximum ratings (Ta=85°C)

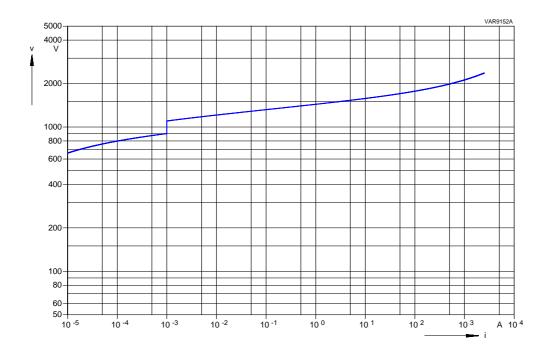
Max. Operating AC voltage	V_{RMS}	=	625 V
Max. Operating DC voltage	V_{DC}	=	825 V
Surge current (8/20µs) 1 time	I_{max}	=	2500 A
Energy absorption (2ms) 1 time	W_{max}	=	68,0 J
Average power dissipation	P_{max}	=	0,4 W

Characteristics (Ta=25°C)

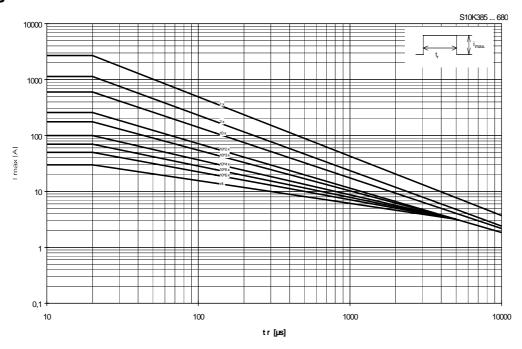
Varistor voltage at 1mA	V_V	=	1000 V ± 10%
Clamping voltage at 25 A (8/20µs)	$V_{C,max}$	=	1650 V

Type. Capacitance at 1 kHz $V_{C,max} = 1650 \text{ N}$ Type. Capacitance at 1 kHz $V_{C,max} = 90 \text{ pF}$

ISSUE DAT


Disc type

SIOV-S10K625G3S3


Ordering code: B72210S0621K331

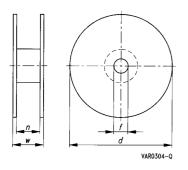
Data sheet

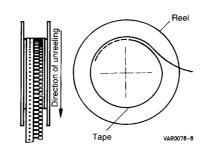
V/I Characteristic:

Derating:

ISSUE DATE

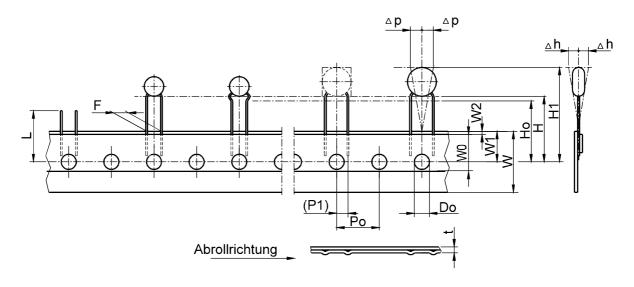
Disc type


SIOV-S10K625G3S3


Ordering code: B72210S0621K331

Data sheet

Taping:


Package Unit: 500 pcs./reel

 $d_{max} = 360mm$ $w_{max} = 64mm$ $f = 31 \pm 1,0mm$ n = 55mm (typ.)

Lead spacing 7,5mm

Disc type

SIOV-S10K625G3S3

Ordering code: B72210S0621K331

Data sheet

Tape dimensions, in Millimeters (mm):

Definition	Symbol	Dimension	Tolerance	Remarks
Body diameter	b	12,0	max	
Body thickness	S	7,5	max	
Lead diameter	d	0,8	± 0,05	
Sprocket hole pitch	P _o	12,7	± 0,3	± 1mm/20 sprocket holes
Distance hole center to lead center	P ₁	8,95	± 0,8	
Lead spacing	F	7,5	± 0,8	measured above carrier tape
Component deviation	Δh			depending on s
Component deviation	Δр	0	± 2,0	measured at top of component body
Carrier tape width	W	18,0	± 0,5	
Adhesive tape width	Wo	11,0	min	Peel-off force ≥5N
Sprocket hole position	W ₁	9,0	+ 0,75/ -0,5	
Adhesive tape position	W ₂	3,0	max	
Distance hole center to the top of the component	H ₁	45,0	max	
Seating plane height	H ₀	16	± 1,0	
Hole diameter	D ₀	4,0	± 0,2	
Total tape thickness	t	0,9	max	
Cutting level	L	11,0	max	

ISSUE DATE	17.12.02	ISSUE	А	PUBLISHER	KH PE VAR	PAGE	4/8
IOOOL DATE	17.12.02	10001		1 ODLIGITEIX	TAITI E VIA	TAGE	4/0

Disc type

SIOV-S10K625G3S3

Ordering code: B72210S0621K331

Data sheet

Reliability Data:

	Characteristics	Test Methods/Description	Specifications
E	Varistor Voltage	The voltage between two terminals with the specified measuring current applied is called V_v (1 mA _{DC} @ 0.2 - 2 s).	To meet the specified value.
L	Clamping Voltage	The maximum voltage between two terminals with the specified standard impulse current (8/20µs) illustrated below applied.	To meet the specified value.
Е			
С		700 Peak 100	
Т			
R		Τ ₅ Rose Time μs Το Decay time to half value μs Ω Ω Peak value	
I			
С	Surge current derating,	100 surge currents (8/20 μs), unipolar, interval 30 s, amplitude corresponding to derating curve	∆ V/V (1 mA) ≤ 10 % (measured
А	8/20 μs	for 20 µs	in direction of surge current) No visible damage
L	Surge current derating, 2 ms	100 surge currents (2ms), unipolar, interval 120s, amplitude corresponding to derating curve for 2ms	Δ V/V (1 mA) ≤ 10 % (measured in direction of surge current) No visible damage

ISSUE DATE 17.12.02 ISSUE A PUBLISHER KH PE VAR PAGE
--

Disc type
Ordering code: B72210S0621K331

SIOV-S10K625G3S3

Data sheet

	Characteristics	Test Methods/Description	Specifications
	Tensile strength	After gradually applying the force specified below and keeping the unit fixed for 10 seconds, the terminal shall be visually examined for any damage.	Δ V/V (1 mA) ≤ 5 % No break of solder joint, no wire break
М		Terminal diameter Force 0.5 mm 5 N 0.6 mm 10 N 0.8 mm 10 N 1.0 mm 20 N	
E	Vibration	After repeatedly applying a single harmonic vibration according to the table below. Thereafter, the unit shall be visually examined.	∆ V/V (1 mA) ≤ 5 % No visible damage
С		frequency range: 10 55 Hz amplitude: 0.75 mm or 98 m/s² duration: 6 h (3 x 2 h) pulse: sine wave	
A N	Solderability	After dipping the terminals to a depth of approximately 3 mm from the body in a soldering bath of 235°C for 5 seconds, the terminals shall be visually examined.	The inspection shall be carried out under adequate light with normal eyesight or
I			with the assistance of a magnifier capable of giving a magnification of 4 times to 10 times.
С			The dipped surface shall be covered with a smooth and
Α			bright solder coating with no more than small amounts of
L			scattered imperfections such as pinholes or unwetted or de-wetted areas. These imperfections shall not be concentrated in one area.

ISSUE DATE 17.12.02 ISSUE A	PUBLISHER KH PE VAR PAGE 6/8
-----------------------------	------------------------------

Disc type

Ordering code: B72210S0621K331

SIOV-S10K625G3S3

Data sheet

	Characteristics	Test Methods/Description	Specifications
M	Resistance to soldering heat	Each lead shall be dipped into a solder bath having a temperature of 260 ± 5°C to a point 2.0	Δ V/V (1 mA) ≤ 5 %
E	3	to 2.5 mm from the body of the unit, be held	No visible damage
С		there for 10 ± 1 s and then be stored at room temperature and normal humidity for 1 to 2	
H		hours. The change of V _v and mechanical	
Α		damages shall be examined.	
N	Electric strength	2500 V _{RMS} , 10 s	No breakdown
I		The varistor is placed in a container holding 1.6 \pm 0.2 mm diameter metal balls such that only the	
С		terminations of the varistor are protruding.	
Α		The specified voltage shall be applied between both terminals of the specimen connected	
L		together and the electrode inserted between the	
		metal balls.	

ISSUE DATE	17.12.02	ISSUE	Α	PUBLISHER	KH PE VAR	PAGE	7/8
------------	----------	-------	---	-----------	-----------	------	-----

Disc type

Ordering code: B72210S0621K331

SIOV-S10K625G3S3

Data sheet

	Characteristics	Test Methods/Description	Specifications
E N	Max. AC operating voltage	After being continuously applied the maximum allowable voltage at $85 \pm 2^{\circ}$ C for 1000 hours, the specimen shall be stored at room temperature and normal humidity for 1 to 2 hours. Thereafter, the change of V_v shall be measured.	Δ V/V (1 mA) ≤ 10 %
V	Damp heat, steady state	The specimen shall be subjected to $40\pm2^{\circ}\text{C}$, 90 to 95 % r.H. for 56 days without load and then stored at room temperature and normal humidity for 1 to 2 hours. Thereafter, the change of V_{v} shall be measured.	Δ V/V (1 mA) ≤ 10 %
R	Climatic sequence	The specimen shall be subjected to: a) dry heat at +85°C, 16 h	Δ V/V (1 mA) ≤ 10 %
0		 b) damp heat, 1st cycle: 55°C, 93 % r.H., 24 h c) cold, -40°C, 2 h d) damp heat, additional 5 cycles: 55°C, 93 % r.H., 24 h/cycle 	
N		Then the specimen shall be stored at room temperature and normal humidity for 1 to 2 hours. Thereafter, the change of V _v shall be	
М		measured.	
E	Fast temperature cycling	The temperature cycle shown below shall be repeated 5 times. Then the specimen shall be stored at room temperature and normal humidity for 1 to 2 hours. The change of V _v and	∆ V/V (1 mA) ≤ 5 % No visible damage
N		mechanical damage shall be examined.	
Т		Step Temperature (°C) Period (min.) 1 -40 ± 3 30 ± 3 2 transition time $< 10 \text{ s}$ 3 85 ± 2 30 ± 3	
А			
L			

Note: More details can be found in the data book 'SIOV Metal Oxide Varistors', Ordering No. EPC: 62002-7600

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

ISSUE DATE

[©] EPCOS AG 2002. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.