ﬁ— UM2004
7’ life.augmented User manual

STreamPlug ST2100 SDK and quick start guide

Introduction

This manual explains the steps necessary to install the STreamPlug SDK, and how to build
and load a firmware image for a STreamPlug based device. It will also cover creating
a new configuration to support different hardware configurations.

It is assumed the reader has a thorough knowledge of Linux.

For updates and support please consult the loTecha Web site: www.iotecha.com.

February 2016 DocID028797 Rev 1 1/57

www.st.com

http://www.st.com

Contents UM2004

Contents
1 SDK SetUP .. .ot it e 5
1.1 Release package i 5
1.2 Installing SDK 7
1.3 WIndows® toolSt 7
2 Firmwarereleases i it i e 8
3 Firmware regions and bootsequence 9
3.1 Bootsequence e 9
Example boot scenarios. 9
3.2 Firmware integrity e 10
Network update 11
3.3 Upgrade image rationale i, 11
34 Bootrecovery mode 11
Manually entering bootrecoverymode 12
4 Hardware target (board) configuration 14
4.1 Introduction 14
4.2 User board configurations 14
4.3 Board configurationdetail o L. 15
4.3.1 Board configuration -board.cfg 15
4.3.2 Memory Mmap 16
4.3.3 Manufacturer parameters and the mfct.xml configuration file 17
43.4 HPAV modem configuration 23
5 Assembling firmware binaries o o, 24
5.1 stpmake - tool overview 24
5.2 stpmake - common options 25
5.2.1 —listboards 25
5.2.2 —outbase 25
5.2.3 ——format ... 25
5.2.4 —stpfw_path 25
5.2.5 SVMIINUX L e 25

2/57 DoclD028797 Rev 1 ‘YI

UM2004 Contents
5.2.6 —infile ... 26
5.2.7 Y PE e 26
5.2.8 —board ... 26
5.3 stpmake - usage examples 26
5.31 Using stpmake to build sfwloader and stpupg UPGRADE images
forbridge firmware 26
5.3.2 Using stpmake to build sfwloader and stpupg UPGRADE images
for Linux firmware 28
5.3.3 Using stpmake to build sfwloader and stpupg FACTORY images
forbridge firmware 29
5.3.4 Using stpmake to build sfwloader and stpupg FACTORY images
for Linuxfirmware e 29
5.3.5 Using stpmake to build sfwloader and stpupg rootfs images 30
5.3.6 Using stpmake to build raw FACTORY images for bridge firmware ... 31
6 Loading firmware 32
6.1 Load using sfwloader 32
6.2 Load using stpnetutil 32
Appendix A sfwloader i e 33
Appendix B stpnetutil. i e e 34
B.1 Overview of tool. 34
B.2 Prerequisites. e 34
B.3 Stpnetutilusage. 34
B.3.1 Helpandusage. i 34
B.3.2 Finding and selecting network interface 36
B.3.3 Discovery and specifyinga STP device 37
B.3.4 Examine firmwareimage 39
B.3.5 Setting the security key (NMK) i 40
B.3.6 Firmwareupdate. 41
B.3.7 BSS list - display AV networks visible to a specificnode 42
B.3.8 Bridging information discovery L 44
B.3.9 Channel qualityreporting 45

Appendix C Considerations for pre-programming NAND devices

S74

with STreamPlug firmware oot 52

DoclD028797 Rev 1 3/57

Contents UM2004

Appendix D STreamPlug boot source selection 53
Appendix E Hashing passwordstokeys 54
E.1 hpav-keygentool. 54

E.1.1 Generating NMK 54

E1.2 Generating device password and DAK. 55

Revision history i i e e e 56
4/57 DoclD028797 Rev 1 Kys

UM2004

SDK setup

1.1

)

SDK setup

Release package

The full release package contains the SDK, STreamPlug firmware, Linux source, as well as
prebuilt images to get you started quickly. Partial releases may contain updates on any
released component such as firmware, or an update to the Linux kernel. However, this
document relates to a full release package.

After extracting the release archive, the following files/folders can be found:
stp_sdk-{build date}.tar.bz2
firmware/stp-bridge-release-{build id}

firmware/stp-lnx-release-{build id}

linux/prebuilt/backport-prebuilt.tgz
linux/prebuilt/tools-prebuilt.tgz
linux/prebuilt/vmlinux
linux/prebuilt/rootfs/full nand
linux/prebuilt/rootfs/full smi
linux/prebuilt/rootfs/minimal nand

linux/prebuilt/rootfs/minimal smi

linux/src/backports.tar.bz2
linux/src/buildroot.tar.bz2
linux/src/examples.tar.bz2

linux/src/oklinux-2.6.35-streamplug.tar.bz2

prebuilt/rel-stp-{ver}-bridge-release-{build id}/
(.stpupg/.smiprog/.fw.bin)
prebuilt/rel-stp-{ver}-stplnx-release-{build id}/
(.stpupg/.smiprog/.fw.bin)
prebuilt/rel-stp-{ver}-bridge-release-{build id}-FACTORY/{board}/
(.smiprog/.fw.bin)

The files are grouped and described as follows:
e SDK
— stp_sdk-{build_date}.tar.bz2

- This SDK file contains the tools and scripts to generate and assemble firmware
images. The SDK also contains some example 'board' configurations. Board
configurations are discussed in more details in Section 4: Hardware target
(board) configuration on page 14. The build_date uniquely identifies a SDK
bundle. Always use the latest SDK.

DoclD028797 Rev 1 5/57

SDK setup UM2004

e STreamPlug firmware
— firmware/stp-bridge-release-{build_id}
- One of the two firmware packages supported by the STreamPlug. This bridge
firmware is for PLC Ethernet bridging (including all management support such as

firmware update, etc.) and does not enable Linux. Due to its small size, the

bridge firmware can be useful as a 'backup' firmware image for the Linux system
if the Flash space is limited.

— firmware/stp-Inx-release-{build_id}

- This is the second firmware package for the STreamPlug. This firmware includes

the hypervisor support to run a Linux kernel that can be built from the provided
sources.

e Linux
— Prebuilt binaries
- linux/prebuilt/backport-prebuilt.tgz
- Prebuilt backport for Wi-Fi drivers. For more information on Linux see the

UM2003 - “Getting started guide - STreamPlug ST2100 Linux support

package”/ UM1942 - “Linux software user manual for STreamPlug ST2100” on
www.st.com.

- linux/prebuilt/tools-prebuilt.tgz

- Prebuilt STreamPlug tool binaries. This contains Linux tools that can be used to
manage the STreamPlug modem from Linux environment, including:

- stpnetutil - firmware update, discovery, device stat. access, etc.

- stpconsole - allows access to the modem management console from within
Linux

- stpimagevalidate - used to indicate to the system that the boot was
successful. This tool is used to support a fault-tolerant remote update.
- linux/prebuilt/'vmlinux

- Linux kernel prebuilt from included sources
- Root file systems

- Prebuilt root file systems with different options. These correspond to the config.

files found in the buildroot sources. See Linux manuals UM1942 and UM2003
for more information.

- Included configurations
- linux/prebuilt/rootfs/full_nand
- linux/prebuilt/rootfs/full_smi
- linux/prebuilt/rootfs/minimal_nand
- linux/prebuilt/rootfs/minimal_smi
— Linux sources
- Source archives for the above-mentioned prebuilt binaries
- Archives
- linux/src/backports.tar.bz2
- linux/src/buildroot.tar.bz2
- linux/src/examples.tar.bz2 (contains tools)
- linux/src/oklinux-2.6.35-streamplug.tar.bz2

6/57 DoclD028797 Rev 1

)

UM2004

SDK setup

1.2

Note:

1.3

Note:

)

o Prebuilt binary images suitable to load onto hardware
— prebuilt/rel-stp-{ver}-bridge-release-{build_id}/ (.stpupg/.smiprog/.fw.bin)
— prebuilt/rel-stp-{ver}-stpinx-release-{build_id}/ (.stpupg/.smiprog/.fw.bin)
— prebuilt/rel-stp-{ver}-bridge-release-{build_id}-FACTORY/{board}/
(-smiprog/.fw.bin).

Installing SDK

The first step is to install the SDK in your environment. To do this, extract the SDK to its own
folder. For this example, make a directory named stp_sdk at the same level as the archive
and extract to that location:

$ mkdir stp sdk
$ cd stp sdk
$ tar xfj ../stp_sdk-{build date}.tar.bz2

The SDK must be installed on a Linux PC in order to build and assemble images.
To use the SDK, some environment variables and paths must be setup. The below example
assumes using a bash shell.

$ export STP_SDK DIR={path to stp sdk dir made above}

$ export
PATH=${STP_SDK DIR}/system/scripts:${STP_SDK DIR}/system/tools/bin/linux-
gnu-x86_64:$PATH

After the SDK is setup you can test by running the utility 'stpmake’. It should run and report
errors as required command line arguments are not present. If the system cannot find the
stpmake utility, verify the above steps.

Windows® tools

Although the SDK must be run on Linux to build images, several of the tools are available to
run on a Windows PC. Windows tools are located in the SDK under:
${STP_SDK_DIR}/system/tools/bin/cygwin-i686.

Cygwin is NOT required. In the future this folder may be renamed “win32”.

DoclD028797 Rev 1 7/57

Firmware releases UM2004

2

Note:

8/57

Firmware releases

STreamPlug firmware images can be built from either of the supplied firmware releases. As
enumerated above (Section 1.1) in the files contained in the SDK release package, two
base firmware images are released with the SDK:
e stp-bridge-release
— Bridge firmware is a complete firmware package that enables PLC Ethernet
bridging.
Tip: stp-bridge-release can be used as a good initial step in your application
development or debug. With the bridge mode, you can use a desktop Linux PC to
develop and debug your application and test with bridge mode firmware
connecting your PC to STP via Ethernet. Later, you can make transition to the stp-
Inx-release image to run your application in the embedded Linux environment.
e stp-Inx-release
— Linux firmware contains the PLC MAC as well as a microvisor that will run a Linux
kernel.
— This is NOT a complete image and requires a Linux kernel to be 'woven' into it in

order to build a bootable image. A pre-compiled Linux kernel is provided to get
started quickly without the need to compile a kernel.

When using SDK tools with the stp-Inx-release package, the tool will also require you to
specify the path to a Linux kernel (vmlinux) to use.

Each firmware build contains a unique build ID that is a part of its filename.

)

DoclD028797 Rev 1

UM2004

Firmware regions and boot sequence

3

3.1

Firmware regions and boot sequence

STreamPlug firmware images can be placed into two 'regions' defined by the memory map,
these are the:

e Factory region
e Upgrade region
Images to be loaded into the factory region are referred to as factory images, and when

generated by the tools have the string FACTORY in the name, while images to be loaded
into the upgrade region have the string UPGRADE in the resultant image filename.

Factory and upgrade images are different. While they can each contain the same firmware
(within size restrictions based on the region sizes), the factory image contains additional
information that is unique to the hardware platform.

Factory images contain:

¢ Bootloader

e DDR memory parameters

e Memory map [specifies where to look for an upgrade image (if it is present)]

¢ Manufacturer parameters [hardware specific configuration parameters (more on this
later)]

. Firmware

Upgrade images contain only the bootloader and firmware.

Boot sequence

In order to help understand the different images, a few example cases of boot sequence are
examined in the following sections.

Example boot scenarios

)

Case 1: Flash contains a factory image whose memmap does not specify an upgrade
image (see the memmap definition detail in Section 4.3.2: Memory map on page 16).

e The STreamPlug starts to load the factory image from a location based on the BMODE
pin value: (see Appendix D: STreamPlug boot source selection on page 53 for more
details)

— If SMI: address 0x0 of SMI CS1

— If NAND: starts looking at the address 0x0 for Image #0 in NAND
e Loads DDR, initializes memory
e Loads and stores the memory map for use by later boot stages

e Loads and stores manufacturer parameters (some of these parameters can specify
optimized timing for SMI/NAND interfaces; if so they are applied)

e Loads and executes the factory firmware image.

DoclD028797 Rev 1 9/57

Firmware regions and boot sequence UM2004

3.2

10/57

Case 2: Flash contains a factory image whose memmap does specify an upgrade image,
but this region is empty or corrupt (see the memmap definition detail in Section 4.3.2:
Memory map on page 16).

e The STreamPlug starts to load the factory image from a location based on the BMODE
pin value (see Appendix D: STreamPlug boot source selection on page 53 for more
details):

— If SMI: address 0x0 of SMI CS1

— If NAND: starts looking at address 0x0 for Image #0 in NAND
e Loads DDR, initializes memory
e Loads and stores the memory map for use by later boot stages
e Loads and stores manufacturer parameters

— Some of these parameters can specify optimized timing for SMI/NAND interfaces;
if so they are applied.

e Since the upgrade image location was specified, it starts to boot the firmware at the
upgrade region.

e Since there is no valid upgrade region, the load fails, and it continues to boot the
factory firmware.

Case 3: Flash contains a factory image whose memmap does specify an upgrade image,
and the upgrade image is present (see the memmap definition detail in Section 4.3.2:
Memory map on page 16).
e The STreamPlug starts to load the factory image from a location based on the BMODE
pin value (see Appendix D for more details):
— If SMI: address 0x0 of SMI CS1
— If NAND: starts looking at address 0x0 for Image #0 in NAND
e Loads DDR, initializes memory
e Loads and stores the memory map for use by later boot stages
e Loads and stores manufacturer parameters

— Some of these parameters can specify optimized timing for SMI/NAND interfaces;
if so they are applied.
e Since the upgrade image location was specified, it starts to boot the firmware at the
upgrade region.

e Upgrade image is loaded and running.

Case 4: There is no valid factory image found.

e If the STreamPlug cannot find a valid factory image to start booting based on the
BMODE (see Appendix D for more details) configuration pins, it will enter a boot
recovery mode where it will try to boot via the serial port. See Section 3.4: Boot
recovery mode for more details on the boot recovery mode.

Firmware integrity

The firmware images are well protected with incremental 64-bit CRCs that are checked as
the image is loaded by the bootloader making it highly unlikely for a 'bad' image to be
executed.

)

DoclD028797 Rev 1

UM2004

Firmware regions and boot sequence

Network update

3.3

3.4

Note:

)

The network update is robust against failure due to:

e Firmware integrity checks (CRCs) - in the image will prevent a bad image from being
executed.

e A factory firmware image that has the capability to perform a network based update is
present and will never be changed.

e Infield updates will only write to the upgrade region.

Of course, in development, writing the factory firmware is allowed and necessary. However,
writing the factory image from the network update tool is dangerous. If the process fails or is
interrupted, the device will need to be recovered using the serial loader mechanism
described in Section 3.4.

Upgrade image rationale

The driving force behind storing device unique data in the factory region (DDR parameters,
memmap, manufacturer configuration parameters) is to decouple the upgrade firmware
image from a specific hardware build and/or revision of hardware.

This method allows a common upgrade image to be used in many products. With this
method, it is also possible to have one upgrade binary that could be deployed to several
different products, thereby reducing testing time and user confusion when selecting the
correct firmware to load.

Boot recovery mode

If the device fails to boot a valid firmware image (this could be due to some update failure, or
it could be the case of a new device that has an empty Flash) it will enter a boot recovery
mode.

In the boot recovery mode, the device will alternate listening on both UARTSs (checking each
set of I0s since each UART can be selected on two different pin locations) for a firmware
loader beacon.

There is a utility as a part of the SDK (sfwloader) that is available for both Linux and
Windows PCs that implements the serial firmware loader protocol for use with this recovery
mode.

It is possible via the SDK to generate an image for use with the sfwloader that will program
SMI (or NAND) and this can be used to recover a 'bricked' (unresponsive due to bad
programming) board.

The SDK will generate files named .smiprog or .nandprog to indicate which device they will
program. Since the STreamPlug does not contain any code that can program the Flash in its
small internal boot ROM, these images will load a small programmer first, then do the
programming (all as a part of a single image). Since the DDR memory must be accessed to
execute the programming algorithm, the smiprog/nandprog images have a dependency on
the DDR memory type/configuration. The SDK ships with generic configurations for the
different DDR configurations known to be used by STreamPlug modules. When generating
these images from the SDK it will require a board configuration to be specified due to this
DDR memory dependency.

DoclD028797 Rev 1 11/57

Firmware regions and boot sequence UM2004

Manually entering boot recovery mode

Sometimes it may be necessary or convenient to enter the boot recovery mode manually
even if there is a bootable image on the device. Two examples of this would be:

1. Programming a device via serial when there is no network connection easily available.

2. Afirmware image was loaded that boot successfully but when executed enters some
deadlock before watchdogs could be enabled.

In this section the various methods of manually entering the boot recovery mode are

discussed.

1. Hardware pushbutton

a) Some module designs include a small pushbutton that will force the device into the
boot recovery mode. If your hardware platform has this feature; this is the easiest
method. To use this feature, follow these steps:

i. Power off the device (or hold in reset button)
ii. Press and hold the recovery button
ii. Apply power (or release reset button)
iv. Release the recovery button
2. From bootloader

a) If your image is configured such that the bootloaders (both in the factory and
upgrade images) output boot messages, you can use this method. (To determine if
the bootloaders are outputting debug messages; connect a console and you
should observe output immediate out of reset).

i. During the image loading process (where the '." characters are displayed) quickly
press the "' key 5 times. This will cause the boot to abort.

1) If the upgrade image is booting, aborting the load of the upgrade image by
pressing " will cause the factory image to load immediately following the
upgrade image load failure, so you must continue to press "' quickly to abort
the load of the factory image. When all console output stops with an error
message, the device has entered the boot recovery mode.

3. From the RTOS console

a) Ifthe RTOS console is enabled on a serial port, (or accessible via the stpconsole
application from within Linux) you can reboot to the recovery mode.

i. When you access the RTOS console, make sure you are at the top menu by
pressing 'q' several times.

ii. Press 'R', then 'S’
[target:okl-1linux] ##>R

(CAPITAL 'Y' if you are,
CAPITAL 'S' to reboot to the standard region.)
The system is going down NOW!

iii. This will cause the device to boot to the previous image in the boot chain that
would be:

1) If running the upgrade, it would boot the factory image. So if running the
upgrade, you will need to do this twice to get to the boot recovery mode.

12/57 DoclD028797 Rev 1 ‘YI

UM2004 Firmware regions and boot sequence

Note: If the FACTORY image is running bridge firmware, the stpconsole will
not be available. In this case use the RTOS serial console or another
method to exit factory firmware into boot recovery mode.

2) If running the factory, since there is no previous image, it would enter the
boot recovery mode.

4. Via hardware intervention

Warning: RISK OF DAMAGING HARDWARE.
Only use this method as a last resort and at your own risk.

a) As can be inferred from the above methods, the recovery mode is entered when
a boot attempt fails. (In fact, the recovery push-button works by pulling one of the
BMODE inputs high, so that an invalid boot method is selected, with the result that
the boot attempt will fail).

b) As alast resort, the boot recovery mode can be entered by forcing the boot to fail,
perhaps by:
i. Changing the BMODE pins (if possible with the dip switch or jumpers on
a development board)

ii. Inserting some error from the SMI read if booting from SMI by disconnecting
CS, or temporally shorting the DOUT of the SMI part.

)

DoclD028797 Rev 1 13/57

Hardware target (board) configuration UM2004

4

4.1

4.2

14/57

Hardware target (board) configuration

Introduction

The SDK allows for custom configurations to support different hardware builds. In the SDK
these configuration sets are referred to as 'boards'. Board configurations include:

o DDR memory configuration (size, organization, and timing values)
Multi-purpose 10 (MFIO) mappings
. Peripheral configurations (via Linux command line)

Note: The 'Linux' command line is also processed by modem firmware, and
therefore is required for the non-linux 'bridge’ images as well.

. Flash memory map
e HPAV modem configuration

Some generic board configurations are shipped with the SDK and can be found in the
folder: $STP _SDK DIR/board. In addition to board configurations provided in the SDK,
hardware partners may also provide example configurations for development boards and
STreamPlug modules.

User board configurations

To maintain a clean SDK installation, it is recommend that 3™ party and user-created board
configurations are managed outside the SDK directories. This will enable easier local
version control for these files. To support this, set the environment variable
STP_SDK_USER_BOARDS to point to a folder containing board configurations.

The stpmake utility uses the board configurations to assemble firmware images. You can
also use stpmake to see what boards are available.

$ export STP_SDK CUSTOM_ BOARDS=/work/streamplug/custom boards
$ stpmake --list-boards

stpmake v1.11
From: /work/streamplug/custom boards
test_board : My Custom board
From: /work/streamplug/stp sdk/board
generic-128MB-smi : Std Config, 128MB Ddr, SMI memmap, eth=off
generic-256MB-smi : Std Config, 256MB Ddr, SMI memmap, eth=off
generic-512MB-smi : Std Config, 512MB Ddr, SMI memmap, eth=off

In the above example you can see a custom board named 'test_board' is located in:
/work/streamplug/custom_boards that is the custom board folder.

)

DoclD028797 Rev 1

UM2004

Hardware target (board) configuration

4.3

4.3.1

Board configuration detail

Each board configuration is a folder that contains a set of configuration files. An overview of
these configuration files is presented below.

Board configuration - board.cfg

The board.cfg file is the top-level configuration file for the board. It is a parameter=value pair
file with some mandatory and some optional fields as described in Table 1.

Table 1. Configuration parameters (board.cfg)

Parameter

Required

Description

description

N

A textual description of the board configuration to be displayed when using
stpmake --list-boards.

ddr_config

Specifies the DDR memory configuration. Several 'standard’ configurations are
available under: $STP_SDK_DIR/system/ddrconfig

— DDR2_1x_x16_128MB - 128 MB (one x16 device)

— DDR2_1x_x16_256MB - 256 MB (one x16 device)

— DDR2_2x_x8_256MB - 256 MB (two x8 devices)

— DDR2_2x_x8_512MB - 512 MB (two x8 devices)

Contact ST for support if you require a different configuration not provided by default.

memmap

Specifies the file to be used as the system memory map. See Section 4.3.2 for more
details on the format of the memmap file.

bootdbg

Defines what UART is used to display low level boot status messages. This is useful for
early debug, and is advisable to set if a serial console is available. Allowed values are:

— uart1g6 - UART1, with 10s mapped to 'primary' config. on MFIOS 24-27

— uart1g20 - UART1, with IOs mapped to 'secondary' config. on MFIOS 80-83
— uart2g5 - UART2, with I0s mapped to 'primary' config. on MFIOs 20-23

— uart2g21 - UART2, with IOs mapped to 'secondary' config. on MFIOs 84-87
— release - boot debug messages disabled (default value).

mfct_file

Specifies the file to be used for the manufacturer parameters. See Section 4.3.3 for
more details on the format of the mfct file.

hpav_config

Specifies the file to be used for the hpav modem configuration file. See Section 4.3.4 for
details on the format of the hapvconfig file.

Note:

Some parameters specify a file location. The path of the file is determined by the leading
characters of the filename as defined in Table 2.

Table 2. File location spec. (board.cfg)

Example

File location

memmap=my.map

Within SDK (see comments in “board.cfg” files included in the SDK for details).

memmap=/abspath/my.map | Absolute location as specified

memmap=./my.map

Within the current board directory

)

DoclD028797 Rev 1 15/57

Hardware target (board) configuration UM2004

4.3.2

16/57

Memory map

The memory map specifies the layout of the Flash for the system. In addition to specifying
where the firmware images are, it specifies the location of the STreamPlug firmware (RTOS)
NVRAM area, as well as Linux partitions. The Linux partition information is automatically
generated from the memmap.

File format

Comments in the memory map are in the 'shell' style, where a leading '#' for a line denotes
a comment.

The file has one entry per line, and the entry is described as:

Comment

Entry
Entry
Entry := name:type:type:fwupdate_allowed[:device_variant]
name := alphanumeric
type := sys factory fw | sys upgrade fw | sys nvram | lnx part
| lnx part ro
device := smil | smi2 | smi3 | nand
fwupdate allowed := y | n
Where device == smil | smi2 | smi3
device variant := start address:size
Where device == nand
device_variant := start_address:size:fw_image number
start_address := number
size := number
number := Oxnnnn | nnn[K|M]

Example 1 SMI memory map

factory :sys factory fw :smil:n:0x00000000:0x00100000
upgrade :sys_upgrade fw :smil:y:0x00100000:0x004c0000
nvram :8ys_nvram :smil:n:0x005c0000:0x00040000

rootfs :1nx part :smil:n:0x00600000:0x00a00000

In this memory map it is assumed that there is a 16 MB SMI part on the first chip select, and
the STreamPlug is configured to boot via SMI (setting BMODE to 0b000 - see STreamPlug
boot source selection on page 53 for more details). It is important that the factory image
section matches the boot type. Only the upgrade firmware is allowed to be updated in the
field by the network update utility.

Example 2 NAND memory map

factory :sys factory fw :nand:n:0x00000000:0x00600000:0
upgrade :sys_upgrade fw :nand:y:0x00600000:0x00600000:1
nvram :8ys_nvram :nand:n:0x00C00000:0x00040000
rootfs :1lnx part :nand:n:0x00C40000:0x1F3C0000

)

DoclD028797 Rev 1

UM2004

Hardware target (board) configuration

4.3.3

)

In this memory map, it is assumed that there is no SMI, and all firmware is to be in the
NAND. This is similar to the above SMI example, except the fw_image_number defined for
the NAND device type. The fw_image_number is required for NAND firmware and fixed as
O==factory firmware, 1==upgrade_firmware.

Special considerations

e For Linux partitions, the name (first field) of the memory map entry has significance.
— If the type is rootffs, it will be used as the root partition from the command line.

— File systems can be written using the network update tool, stpnetutil. For this to
function, the file partition name must be one of:

- rootfs
- auxifs
- aux2fs
e 'nvram ' type must be included in the memory map, and should be at least 2 x the
device erase block size.

The flag 'fwupdate_allowed' is the permission after the device parameters are locked down.
In the development phase without locking device parameters down, all regions can be
updated using the stpnetutil regardless of the value of this field. See “mfct.writeprot” in
Section : MFCT keys for more details on lockdown.

Manufacturer parameters and the mfct.xml configuration file

Manufacturer parameters can be thought of as a set of key/value pairs that define 'build
time' configuration for a device.

The mfct.xml configuration file is where the user specified manufacturer parameters are
stored. The mfct.xml should be modeled after the template in the SDK as the SDK tools will
post process this file and the format must lend itself to such processing.

Warning: WARNING: RISK OF INCORRECT PROGRAMMING.
This file directly specifies binary data used by the system.
There are very few format checks on this data, and errors in
parameter sizes and field locations could cause to a device
a fail to boot. When making changes to this file double check
your work and test on one device before deploying the
update to many devices.

The valid keys and format of their values are defined within the SDK in a parameter
definition file located at: ${STP_SDK_DIR}/system/mfctparam/params.def. This file
specifies the key name as well as the data structures for the data.

An example of this is the definition for one of the required parameters hpav.core.
Hpav core, required parameters

hpav.core : Hpav

{

Version of this param. Must be 0.

Version:u8

DoclD028797 Rev 1 17/57

Hardware target (board) configuration UM2004

HPAV Mac address to be used by the modem
MacAddr:byte [6]

Default NMK to be used by HPAV. This is the 'reset' value. The device
will store an

updated version in NVRAM based on user input. If the device is reset
to factory

defaults, this value is used.

Nmk :byte [16]

Device encryption key. Unique per-device key - not changeable by
user.

Dak:byte[16]

Default Device friendly name

DeviceName:string [*32]

Note that MAC addresses are a part of this config set. Since the manufacturer parameters
are stored in the factory region, they are not updated when a network update is done. This
allows device specific configuration values to be set.

For MAC addressees specifically, if a special value of ff:ff:ff:ff:ff:ff is used, the STreamPlug
firmware will generate a unique 'locally managed' MAC address based on that device's
unique silicon ID. This can help to avoid the burden of assigning MAC addresses during the
development cycle.

Updating MFCT parameters

There is a tool that can be used at production time to update these parameters via some
special messages; this gives an easy way to program per device information after all
production tests have passed.

Some of the parameters that would be updated at manufacture time would include per
device unique information such as:

¢ MAC address

e Security keys

o Certificates

In addition to programming per device unique information, the write protection key would be
added (see “mfct.writeprot” in Section : MFCT keys) before the changes were committed.

At this point the device would no longer be able to accept parameter updates, and the
'fwupdate_allowd' permissions set in the memmap will now be honoured.

)

18/57 DoclD028797 Rev 1

UM2004

Hardware target (board) configuration

MFCT keys

hpav.core

This parameter is used by the HomePIlugAV modem; contains necessary configuration data.

Table 3. hpav.core

Key

Field

Type

Len.

Description

hpav.core

HPAV core pa

rameters. The hpav.core section is mandatory.

Version

ubyte

Version of this parameter. Must be set to 0.

MacAddr

ubyte

HPAV Mac address to be used by the modem.

If set to “ffffffffffff’, a valid MAC address will be automatically
generated and set during the firmware load.

Nmk

ubyte

16

Default NMK to be used by HPAV. This is the 'reset' value.

The device will store an updated version in the NVRAM based on user
input. If the device is reset to factory defaults, this value will be used.

Dak

ubyte

16

Device encryption key. Unique per device key.
This value cannot be changed by the user.

DeviceName

string

Up to 32

Default device user friendly name.

Note:

The NMK and DAK specified in the manufacture parameter region are keys, not passwords.
Passwords are exposed to the user, while keys are used internally. See Appendix E:
Hashing passwords to keys on page 54 for more details on creating keys from passwords
for use in the manufacturer parameter region. To avoid confusion, keep in mind that the
stpnetutil also uses a command line option “--nmk” that refers to the password (see
Appendix B: stpnetutil on page 34 for details).

virtif

This parameter is used to configure the virtual network interface between the Linux and

HPAV mod

em.

Table 4. virtif

Key

Field

Type

Len.

Description

virtif

Virtual network interfac

e between Linux and STP firmware.

Version

ubyte

1

Version of this parameter. It must be set to 0.

MacAddr

ubyte

MAC address to be used by default. This value will be the one
displayed on the Linux console when using the ifconfig command.

If modified by user, the driver will override it.

)

DoclD028797 Rev 1 19/57

Hardware target (board) configuration UM2004

ethernet

This parameter is used to configure the Ethernet MAC address.

Table 5. ethernet
Key Field Type |Len. Description

Ethernet configuration

Version ubyte 1 | Version of this parameter. It must be set to 0.
ethernet
MAC address of the Ethernet interface. This is not needed in the
MacAddr ubyte 6
bridge mode since the interface will run in the promiscuous mode.
target.smiconfig
This parameter is used to configure the timing parameters for the SMI memory. See the
“param.def” file in the SDK: ${STP_SDK DIR}/system/mfctparam/params.def for
details.
Table 6. target.smiconfig
Key Field Type | Len. Description

Timing parameters for the SMI memory. This parameter will be parsed by the boot opcode that reads
mfct params so that boot speed can be maximized.

Version ubyte | 1 | Version of this parameter. It must be set to 0.

Bank enable mask.

Setting bits in this byte indicates what banks are enabled
BankMask ubyte | 1 |(LSB=CSO0).

Note: Because the STreamPlug has dedicated |0 for each bank
there is no harm to enable all banks.
TwoByteAddress mode mask. LSB=CS0.

TwoByteAddrMask | ubyte | 1 | Setting bits in this byte instructs the controller to generate two byte
address cycles (for EEPROM).

target.
smiconfig

ClkHoldPeriod ubyte 1 Setting C.IkHoId. to non-zero stops the clk between each byte, while
CS remains active.

Setting to 1 enables the fast read by selecting the read opcode
FastMode ubyte 1 | 0x03/0x0b -- 0: normal read: 0x03, address, reception -- 1: fast read:
0x0b, address, dummy Byte, reception -->

Prescaler: 0-127. Sets SMI_CK frequency to SMI_CK = 166 MHz /
Prescaler ubyte | 1 |prescaler.

Note: For prescaler = 0, SMI_CK = 166 Mhz.

When CS is deselected it remains deselected for at least

DeselectTime ubyte | 1 (DeselectTime + 1) SMI_CK clock periods.

)

20/57 DoclD028797 Rev 1

UM2004

Hardware target (board) configuration

target.nandconfig

This parameter is used to configure the timing parameters for the NAND memory. See the
“param.def” file in the SDK for details.

Table 7. target.nandconfig

Key Field Type Len. Description
Timing parameters for the NAND memory. This parameter will be parsed by the boot opcode that
reads mfct params so that boot speed can be maximized.
Version ubyte 1 Version of this parameter. It must be set to 0.
Teet Ubvte 1 Time from address valid to /OE /EW activation.
y Total time is Tclk x (Tset + 1).
Time from enable on to enable off for all signals: /OE /EW.
target. Twait ubyte 1 Total time is Tclk x (Twait + 1)
nandconfig Note: Min. value is 1.
Time from enable off (/OE, /EW) and the end of the cycle: address/data
Thold b 1 going to invalid. Total time is Tclk x Thold
° ubyte Note: Min. value is 1.
Note: Tperiod = Tset + Twait + Thold.
, Time from address valid to data bus being driven. (Write cycle only).
Th byt 1
S it Note: Total time is Tclk x Thiz.
target.cmdline
This parameter is used to set the Linux command line.
Table 8. target.cmdline
Key Field Type Len. Description
Command line
target. Version ubyte 1
cmdline - . : -
Cmdline string | Up to 1024 Z};Zteet?) command line (used in both Linux and non-Linux

)

An example of a command line configuration is:

<xmldata:string>console=none rtosconsole=uartl,115200n81
ubi.mtd=@@CMDLINE BOOTPART rootfs@@ root=ubiO 0 rootfstype=ubifs clcd=off
sata=off pcie=off usb=on:host eth=on:secondary i2c=on ssp=on:39
uartl=rtos:primary uart2=on:primary can=on:secondary firda=off fsmc=off
sport=0ff ts=off ark gpio=on:112211 arm gpiol=on arm gpio2=on

@@CMDLINE PARTINFO@@</xmldata:strings

Note the @@XXX@@ items above. These must remain “as is”, as they are updated by the
SDK tools with information from the memory map.

DoclD028797 Rev 1 21/57

Hardware target (board) configuration UM2004

target.info

This parameter specifies hardware information such as the product name/revision. These
values are exposed to the user via the device discovery tool.

Table 9. target.info

Key Field Type Len. Description

Target specific information: information that can be set at manufacture time and used by running SW.

Version ubyte 1 Version of this parameter. Must be set to 0.

Device type reported by discovery:
— 0x00 - generic STP device
target.info DeviceType ubyte 1 — 0x01 - Ox7f - user defined

— 0x80 - Oxfe - Reserved

— Oxff - factory tester V1.

HardwareName string 32 Name of the HW platform, like the PCB name, etc.

HardwareRevision string 8 Revision string

mfct.writeprot

Writing this key enables write protection on the manufacturer parameter region and causes
the firmware update to honour the permissions set in the memory map.

Table 10. mfct.writeprot

Key Field Type Len. Description
mfct. If this key exists, MFCT param write is disabled. Recommended for the production device.
writeprot Version | ubyte ‘ 1 ‘ Version of this parameter. Must be set to 0.

target.memmap

Used internally. This is generated by the SDK by parsing the memmap file. Do not set this
value.

target.recovery

This parameter is used to control the recovery mechanism.

Table 11. target.recovery

Key Field Type Len. Description
Version ubyte 1 Version of this parameter. Must be set to 0.
target. Number of seconds to wait after the system boot for
recovery | SetimageGoodTimeout | u16-le 2 a setimage g.ood signal from Llngx. If timeout expires,
the system will reboot to factory firmware. If 0, no
timeout is used.

)

22/57 DoclD028797 Rev 1

UM2004 Hardware target (board) configuration

4.3.4 HPAV modem configuration

The modem configuration file is an XML file that controls the operation mode of the PLC
modem.

The file should be a well formed XML file based on the schemas located in the SDK under
$STP_SDK_DIR/system/tools/schema.

Below is an example configuration file enabling the HPGP mode for use as an EVSE, and
also specifying the polarity of the line driver used.

<?xml version="1.0" encoding="utf-8"?>

<root xmlns="hpavconfig" xmlns:axd="arkxmldata" xmlns:t="hpavconfig types"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs1:schemalocation="hpavconfig ../hpavconfig.xsd">

<config>
<t:txon-polarity>active high</t:txon-polarity>
<t:device-profile>gp_ evse</t:device-profiles
</config>
</root>

All of the available parameters are documented in the schema hpavconfig_types.xsd found
in the SDK.

Warning: RISK OF INCORRECT PROGRAMMING.
Changing any of these values can lead to the device not
operating properly. Please contact ST to verify changes made
to the modem configuration.

)

DoclD028797 Rev 1 23/57

Assembling firmware binaries UM2004

5

5.1

24/57

Assembling firmware binaries

To assemble upgrade firmware binaries for use with the network update tool, you will need:
e SDK

e STreamPlug firmware

e Linux kernel (if building a Linux image)

To assemble factory firmware binaries, or any firmware binaries to be used with the serial

loader, you will also need (see Section 3.4: Boot recovery mode on page 11 for a discussion
on the board dependency for serial load images):

e Avalid 'board' configuration for your hardware and application.

stpmake - tool overview

To build firmware images, the SDK tool 'stpmake' is used. The stpmake is a command line
tool that assembles firmware images. The stpmake can generate binary images for:

e Direct programming into Flash

o Use with the network update tool 'stpnetutil’

o Use with the serial loader 'sfwloader' in the boot recovery mode.

The tool will identify any required options as well as defaults that are selected.

Running the stpmake without any arguments yields:
S stpmake

stpmake v1.11
Info: --type not specified: defaulting to "stpfw upgrade"
Info: --format not specified: defaulting to "stpupg"

Operation failed.
Errors encountered:

Error: Required option --stpfw path not specified.

One option that is mandatory (based on the assumed defaults of --type=stpfw_upgrade, and
--format=stpupg) is the path to the stpfw. To get full help for the tool, run stpmake --help.

Tip: when running the stomake from the command line, start with few parameters, and allow
the error checking to tell you what you are missing. Following this iterative approach to
constructing the command line will be the easiest way to use this tool.

)

DoclD028797 Rev 1

UM2004 Assembling firmware binaries
5.2 stpmake - common options
5.21 --list boards
This will list the available board configurations in both- the SDK and in user supplied boards.
Supplied board configurations are in separate directories under: $STP_SDK_DIR/board,
and if $STP_SDK_USER_BOARDS is defined, that directory will also be searched for user
supplied board configurations.
5.2.2 --outbase
--outbase=basename
This is an optional argument; it specifies the base path/filename for output images. Note that
this is the base file name, so if a path is specified, a trailing / must be used.
5.2.3 -- format
-- format=stpupg|raw|sfwloader
This option will specify what type of images to generate. If not specified, format defaults to
stpupg.
e stpupg
— Images to be used with the stpnetutil network update tool.
e raw
— Raw images that can be written directly to Flash.

- Note: For building raw NAND firmware images, additional processing must be
done on the raw image to add NAND block headers needed by the bootloader;
and depending on the method used to pre-program the NAND, the NAND spare
area (ECC) may need to be added. See Appendix C: Considerations for pre-
programming NAND devices with STreamPlug firmware on page 52 for more
details.

o sfwloader
— Images to be used with the low level serial loader tool.
5.24 --stpfw_path
--stpfw_path=path
This options specifies the path to the stpfirmware directory of a release. This directory must
include a build_info.dat file.
5.25 --vmlinux

)

--vmlinux=path to vmlinux

When building Linux firmware (Linux firmware is identified to the stpmake by the type key
from the build_info.dat in the --stpfw_path folder).

DoclD028797 Rev 1 25/57

Assembling firmware binaries UM2004

5.2.6 --infile

--infile=path

When building a file system image, this specifies the path of the filesytem image.
Note: When building a UBI file system image, use the *.ubi file, NOT the *.ubifs file.

5.2.7 --type

--type=stpfw_factory|stpfw upgrade|rootfs|auxlfs|aux2fs|raw_<sectionnames>
This option specifies the type of an image being built. The default value is stpfw_upgrade.
e stpfw_factory

o stpfw_upgrade

. rootfs
. auxifs
. aux2fs

e raw_<sectionname>

— raw_<section_name> is only valid for an sfwloader image. <section_name> is the
name of a section defined in the memmap. This could be useful for writing some
raw data to specific locations in Flash.

5.2.8 --board

--board=board name

The option specifies the board configuration name. This can be a name returned by --list
boards, or the full path to a board directory. The board directory must contain a board*.cfg
file to specify the necessary parameters for the board (see Section 4.3.1: Board
configuration - board.cfg on page 15 for more details on board.cfg).

Tip: If you are unsure of the board name while constructing a command line, use anything
like '--board=XXXX". On error, the tool will list the available options.

5.3 stpmake - usage examples

The following examples will detail the most common uses of stpmake. Each usage example
below builds on the previous one so it is advised to understand each example in order.

5.3.1 Using stpmake to build sfwloader and stpupg UPGRADE images for
bridge firmware

Building the stpupg (network update file for use with 'stpnetutil’ tool) is the easiest; the only
required option is the path to the stpfirmware. You can see from the tool output that it
defaults to make 'upgrade' and 'stpupg' images.

$ stpmake --stpfw path=firmware/stp-bridge-release-1la0e201c2812/rel-stp-
1.1-bridge-release-1a0e201c2812/stpfirmware

stpmake v1.11

Info: --type not specified: defaulting to "stpfw upgrade"
Info: --format not specified: defaulting to "stpupg"
26/57 DoclD028797 Rev 1 Kkys

UM2004

Assembling firmware binaries

)

stp_gen image v1.33
Info: Memmap not specified, cannot check image max size

Building: ./rel-stp-1.1-bridge-release-1a0e201c2812-UPGRADE. stpupg

Of course you can be more explicit and specify all parameters. All further examples will be
explicit in specifying all options.

$ stpmake --type=stpfw_upgrade --format=stpupg --stpfw path=firmware/stp-
bridge-release-1a0e201c2812/rel-stp-1.1-bridge-release-
la0e201c2812/stpfirmware

stpmake v1.11

stp _gen image v1.33

Info: Memmap not specified, cannot check image max size

Building: ./rel-stp-1l.l-bridge-release-1a0e201c2812-UPGRADE.stpupg

When looking at this output notice the message indicating the tool cannot validate that the
image would fit. This is because it does not know anything about the memory map. If
memory size should be checked, always provide a --board option so the tool can know the
size of the upgrade image.

Building the sfwloader version of the image does require the --board option since it needs to
know the DDR memory type in order to load and execute the programming algorithm (see
Note: in Section 3.4: Boot recovery mode on page 11 for more details on this). If you forget
to add the --board option when generating an sfwloader image, the tool will remind you it is
necessary. Generating the sfwloader image can be done as follows:

$ stpmake --board=test board --type=stpfw upgrade --format=sfwloader --
stpfw_path=firmware/stp-bridge-release-la0e201c2812/rel-stp-1.1-bridge-
release-1a0e201c2812/stpfirmware

stpmake v1.11

Info: Using board: - (My Custom board)

Info: Board path:

stp_gen image v1.33

Building: ./rel-stp-1l.l-bridge-release-1a0e201c2812-UPGRADE.smiprog

The output image built has the extension of *.smiprog. The sfwloader tool will accept files of
.smiprog or *.nandprog. The extension is simply for convenience to know what is being

programmed. The device being programmed is determined by the memory map in the board
configuration.

DoclD028797 Rev 1 27157

Assembling firmware binaries UM2004

5.3.2

Caution:

28/57

Using stpmake to build sfwloader and stpupg UPGRADE images for
Linux firmware

Building sfwloader and stpupg binaries for Linux firmware is nearly identical to the building
for bridge firmware (see Section 5.3.1) but with the addition of the --vmlinux command line
option to specify the Linux kernel. When building an image for Linux, the STreamPlug
firmware is combined with the Linux kernel to create one image.

IMPORTANT: RISK OF INCOMPATIBLITY.
There exist version dependencies between the Linux kernel and STreamPlug
firmware. Always ensure to use compatible firmware and Linux sources.

Building the stpupg can be done as follows:

$ stpmake --type=stpfw_upgrade --format=stpupg --stpfw path=firmware/stp-
lnx-release-400e201c2al2/rel-stp-1.1-stplnx-release-
400e201lc2al2/stpfirmware --vmlinux=linux/prebuilt/vmlinux

stpmake v1.11

Preparing linux image.. stepl.

Preparing linux image.. step2.

Info: Lnx Kernel Version: streamplug-1.1la

stp_gen image v1.33

Info: Memmap not specified, cannot check image max size

Building: ./rel-stp-1l.l-stplnx-release-400e201c2al2-UPGRADE.stpupg

Building the Linux image has a few more steps as the Linux kernel must be weaved with the
firmware image to create the binary. You can note that the tool also retrieves the kernel
version from the Linux kernel and displays it here as “streamplug-1.1a”. This version is
encoded into the stpupg file, and during runtime can be queried using discovery (see
Section B.3.3: Discovery and specifying a STP device on page 37 for using the stpnetutil for
discovery). It is also possible to get the firmware BuildID and Linux version information from
an *.stpupg file using the --info option to stpnetutil (see section Section B.3.4: Examine
firmware image on page 39 for more details).

Building the sfwloader file is similar except the --board option and a change of the format to
sfwloader is required.

$ stpmake --board=test board --type=stpfw upgrade --format=sfwloader --
stpfw path=firmware/stp-lnx-release-400e201lc2al2/rel-stp-1.1-stplnx-
release-400e201c2al2/stpfirmware --vmlinux=linux/prebuilt/vmlinux

stpmake v1.11

Info: Using board: - (My Custom board)
Info: Board path:

Preparing linux image.. stepl.
Preparing linux image.. step2.

Info: Lnx Kernel Version: streamplug-1l.la
stp gen image v1.33
Building: ./rel-stp-1l.l-stplnx-release-400e201c2al2-UPGRADE.smiprog

)

DoclD028797 Rev 1

UM2004 Assembling firmware binaries
5.3.3 Using stpmake to build sfwloader and stpupg FACTORY images for
bridge firmware
The building factory images requires --board to be specified since the tool will build the
manufacturer parameter region into the factory image. The only difference between the
building sfwloader and stpupg images is the --format command line options. Examples of
both are as follows:
stpupg:
$ stpmake --board=test board --type=stpfw factory --format=stpupg --
stpfw_path=firmware/stp-bridge-release-1la0e201c2812/rel-stp-1.1-bridge-
release-1la0e201c2812/stpfirmware
stpmake v1.11
Info: Using board: - (My Custom board)
Info: Board path:
stp _gen image v1.33
Building: ./rel-stp-1.1-bridge-release-1a0e201c2812-FACTORY.stpupg
sfwloader:
$ stpmake --board=test board --type=stpfw factory --format=sfwloader --
stpfw_path=firmware/stp-bridge-release-1lale201c2812/rel-stp-1.1-bridge-
release-1la0e201c2812/stpfirmware
stpmake v1.11
Info: Using board: - (My Custom board)
Info: Board path:
stp_gen image v1.33
Building: ./rel-stp-1l.l-bridge-release-1a0e201c2812-FACTORY.smiprog
5.34 Using stpmake to build sfwloader and stpupg FACTORY images for

)

Linux firmware

The building on the examples above, it should be easy to conclude that the building factory
images for Linux firmware would be the same as the bridge with the addition of the --vmlinux
option to stpmake.

$ stpmake --board=test board --type=stpfw factory --format=sfwloader --

stpfw_path=firmware/stp-lnx-release-400e201lc2al2/rel-stp-1.1-stplnx-
release-400e201lc2al2/stpfirmware --vmlinux=linux/prebuilt/vmlinux

stpmake v1.11

Info: Using board: - (My Custom board)
Info: Board path:

Preparing linux image.. stepl.
Preparing linux image.. step2.

Info: Lnx Kernel Version: streamplug-1l.la
stp_gen image v1.33

Error: Image ./rel-stp-1.l-stplnx-release-400e201c2al2-FACTORY.fw.bin
exceeds max size allowed (1048576)

Error running stp gen image

DoclD028797 Rev 1 29/57

Assembling firmware binaries UM2004

5.3.5

30/57

Notice that this build failed! In the board “test_board”, the standard SMI memory map that
allocates only 1 MB to the factory firmware region. This build has failed because the
resultant image (including the Linux kernel) is too big to fit.

Some options to remedy this situation are:
e Increase the size of the factory firmware region in the memory map.
e Use a bridge firmware image in the factory region, and use the upgrade regions for

Linux. This is a reasonable choice as the bridge firmware would allow the network
update to occur if there was some failure to complete an update of the Linux firmware.

Note on Ethernet configurations: the Linux command line specifies the configuration of
the Ethernet interface for Linux. There are three settings for Ethernet: on, off, and rtos.
These are described in more details in the UM1942. Simply stated, when eth=on, Linux has
ownership of the Ethernet interface meaning that Linux sees two Ethernet interfaces (PLC
and Ethernet). When eth=rtos, the STreamPlug firmware owns the Ethernet interface and
implements L2 bridging while exposing only one interface to Linux. This is discussed here
as it relates to the decision to use a bridge firmware image in the factory region. In order for
the bridge firmware to the bridge, eth must be set to rtos. If eth is set to 'on’, the PLC modem
will still function but will not bridge any traffic. It will, however respond to discovery and the
firmware update on both interfaces.

Using stpmake to build sfwloader and stpupg rootfs images

It may be useful to use the sfwloader or stpnetutil network updater to load a Linux file
system. This example is for the rootfs, but easily extended to aux1/2 fs. (See documentation
on the --type command line option in Section 5.2.7: --type on page 26).

$ stpmake --type=rootfs --format=stpupg --
infile=1linux/prebuilt/rootfs/minimal smi/rootfs.ubi

stpmake v1.11
Generating ./rootfs.stpupg.

Done.

Generating the sfwloader needs the --board option:

$ stpmake --board=test board --type=rootfs --format=sfwloader --
infile=linux/prebuilt/rootfs/minimal smi/rootfs.ubi

stpmake v1.11

Info: Using board: - (My Custom board)

Info: Board path:

stp _gen image v1.33

Info: Using SMI, Bank 1, Offset=0x600000, Len=0xa00000

Building: ./rootfs-DDR2_1x x16_256MB-release.smiprog

Done.

Note regarding Linux file systems: the UBI Linux file system images need to be built with
the correct geometry information. In the prebuilt configurations there are examples for the
most common SMI and NAND device geometries. If you are building custom hardware with

different memories, it may be necessary to modify the buildroot configuration for the UBI file
system generation.

DoclD028797 Rev 1 ‘YI

UM2004 Assembling firmware binaries
5.3.6 Using stpmake to build raw FACTORY images for bridge firmware
Building a raw image file is necessary if you wish to pre-program into Flash at production
time. The other formats (*.[smi|nand]prog, *.stpupg) all have header and other information
that encapsulates the raw firmware binary file.
A raw firmware file has a suffix of “.fw.bin”. The following example will build a raw factory
image for the board name “test_board”:
$ stpmake --board=test board --type=stpfw factory --format=raw --
stpfw _path=firmware/stp-bridge-release-1la0e201c2812/rel-stp-1.1-bridge-
release-1a0e201c2812/stpfirmware
stpmake v1.11
Info: Using board: - (My Custom board)
Info: Board path:
stp _gen image v1.33
$ 11
-rw-rw-r--. 1 macaluso macaluso 586124 Jul 23 2015 rel-stp-1.1l-bridge-
release-1a0e201c2812-FACTORY.fw.bin
When building a raw file it does not contain any information about where it should be placed
into Flash - for this you need to consult the memory map (although it is a rule that factory
images resides at the beginning of Flash devices, but for an upgrade image the memory
map would need to be consulted).
After building this image, it is possible to use a Flash device programmer to program the
.fw.bin file at the address 0x0 of a SMI Flash device.
Caution: IMPORTANT: RISK OF INCORRECT PROGRAMMING

)

fw.bin files CANNOT be directly programmed into NAND Flash.
(See note in Section 5.2.3: -- format on page 25, as well as Appendix C: Considerations for
pre-programming NAND devices with STreamPlug firmware on page 52 for more details).

DoclD028797 Rev 1 31/57

Loading firmware UM2004

6

6.1

6.2

32/57

Loading firmware

Firmware can be loaded onto the device using either the serial loader, or the network update
tool 'stpnetutil'.

A factory image MUST be present on a device in order for it to boot. Upgrade images are
optional, and if running Linux firmware, a Linux root file system must be loaded.

Load using sfwloader

The serial loader uses the *.smiprog files, or the *.nandprog files. For details on how to load
using the serial loader see Appendix A: sfwloader.

For details on how to load firmware using the network loader, see Section B.3.6: Firmware
update on page 41.

$ sfwloader.exe --port=coml --baudrate=460800 --image=file.smiprog

If loading a new device via the serial loader it is recommended to load the root file system
first, then the upgrade image, finally the factory image. Following this method will be the
easiest since the system will not be able to properly boot until the factory image is present,
loading in the reverse order will avoid having to manually enter boot recovery mode after
each image.

Load using stpnetutil

The network loader uses the *.stpupg files. The network loader encrypts the firmware when
sending it to the device. It is important to know the HomePlug network membership
password to be able to update the device.

stpnetutil --if-index=1 --remote-mac=02:AB:01:B6:20:22 --update --
nmk=HomePlugAV --firmware=stplnx-release-180al81c6212-UPGRADE. stpupg

For details on how to load firmware using the network loader, see Section B.3.6.

)

DoclD028797 Rev 1

UM2004

sfwloader

Appendix A sfwloader

)

The sfwloader tool is used to feed a firmware image to the STreamPlug while the device is
in the boot recovery mode (see Section : Manually entering boot recovery mode on

page 12), or when set to boot from the UART via BMODE pins (see Appendix D:
STreamPlug boot source selection on page 53) for more details on the BMODE pin
definition.

Baud rates up to 460 k are supported. If using 460 k baud, ensure that the serial port of the
PC you are using can support this data rate. USB serial converters with FTDI chipsets have
proven to be the most reliable.

The required arguments to sfwloader are: the port and image. On a Windows PC the port is
specified as e.g.: “comx”, while on Linux the port is specified as the device e.g.: “/dev/ttyS1”.

An example of running sfwloader is:

$ sfwloader.exe --port=coml8 --baudrate=460800 --image=rootfs-
DDR2_1x x16_256MB-release.smiprog

Firmware loader v0.2

Sending BEACON - waiting for response from target device..

Got BEACON response.. Waiting for data requst..

Image 0: (0/5252076) 0.0% Complete.
Image 0: (506/5252076) 0.0% Complete.
Image O0: (1012/5252076) 0.0% Complete.
Image 0: (1518/5252076) 0.0% Complete.
Image 0: (2024/5252076) 0.0% Complete.
Image 0: (2530/5252076) 0.0% Complete.
Image 0: (3036/5252076) 0.1% Complete.
DoclD028797 Rev 1 33/57

stpnetutil

UM2004

Appendix B stpnetutil

B.1

B.2

B.3

B.3.1

34/57

Overview of tool

Stpnetutil provides a set of network utilities that can be used to interact with an STP device.
It can be executed from Windows, Linux as well as the on-board STP Linux. Stpnetutil
provides utilities to perform:

e Discovery of STP devices

e Firmware update

o Security key (NMK) configuration
e Powerline network discovery

e Bridging information discovery

e Channel performance reporting

Prerequisites

Stpnetutil requires the pcap libraries to be installed.
For Windows, download and install WinPcap (www.winpcap.org).

For Linux, install the libpcap libraries. If running on a x86_64 machine, make sure to also
install the load of the i686 libpcap libraries. Depending on the version installed, it may be
necessary to symlink to the shared library that the tool is looking for.

Stpnetutil usage

Most command line options for stpnetutil can be specified using a long or short option
format. 'stpnetutil --help’ will display all available options in a long format, such as '--list-
interfaces’, and a short format, such as '-I'. For this document only the long option format will
be used. Use the short format if desired, as shown in 'stpnetutil --help'.

The three distributions of stpnetutil (Windows, Linux, and STP Linux) all operate identically.
This documentation can be equally applied across all three.

Help and usage

stpnetutil includes command line help and example usage for quick reference.

To display the help, use 'stpnetutil --help'

% stpnetutil --help
stpnetutil v1.4 - STreamPlug network utility

Usage: stpnetutil [OPTION...]

Options:
-1, --list-interfaces Display a list of network interfaces.
-a, --if-name Select network interface by name.
-d, --if-index Select network interface by index.

DoclD028797 Rev 1 ‘YI

UM2004

stpnetutil

-r, --remote-mac=mac-address
-v, --discover-local
STreamPlug
-V, --discover-all
-c, --discover-csv-output
-f, --firmware=filename
--info
-u, --update
--set-nmk
-N, --nmk=password

Utility functions:

-b, --bss-list

--chanqual-sub

--chanqual-unsub
--chanqual-listen
-t, --tei-list
-T, --tei-snapshot
--tei-query
Help functions:

-?, --help

--usage

To display the example usage:

°

% stpnetutil --usage

Mac address of STreamPlug device.

Discover only locally connected

devices.

Discover all STreamPlug devices.

output discovery info in CSV, machine
parseable format.

Firmware file to use for upgrade.
Display information about firmware file.
Update all devices using specified
firmware. Use with -r or -v.

Set NMK on device - must also specify

--nmk=<passwordx>

Use NMK password to derive encryption key.

List BSS's seen by a device. Use with -r or

-V

Subscribe to channel quality measurements.

Can combine with --chanqual-listen, Use
with -r or -v

Unsubscribe to channel quality
measurements. Use with -r or -v

Listen count for chanqual messages.

O0O=continuous

Request simple list of available TEIs on a

network. Use with -r or -v
Requests list of bridged addresses for a
particular TEI. Use with -r or -v

Set the Tei to query --tei-query=<teis>

Show this help message

Show usage examples

stpnetutil v1.4 - STreamPlug network utility

Example usage

stpnetutil --if-name=eth0 --discover-local

Update a local STP device:

)

DoclD028797 Rev 1 35/57

stpnetutil UM2004

stpnetutil --if-name=eth0 --discover-local --update -nmk=HomePlugAV --
firmware=UpgradeImage.stpupg

Update a specific STP device:

stpnetutil --if-name=eth0 --remote-mac=00:11:22:33:44:55 --update --
nmk=HomePlugAV --firmware=Upgradelmage.stpupg

Change the NMK on an STP device:

stpnetutil --if-name=eth0 --remote-mac=00:11:22:33:44:55 --gset-nmk --
nmk=Key1l

NOTE: The set-nmk function can only be used for locally attached devices.

The --remote-mac option must be used. set-nmk cannot be used over the
powerline.

B.3.2 Finding and selecting network interface

If stpnetutil is run without any options it will first tell you that it needs a network interface to
be specified:

$./stpnetutil
stpnetutil v1.4 - STreamPlug network utility

Error: Interface must be specified by --if-name, OR --if-index.

use --list-interfaces to display available interfaces.

Exiting with error: Try --help or --usage

Stpnetutil must be provided with the network interface to use. The command-line option '--
list-interfaces' exists to provide the user with a list of the available interfaces. The output of
this option slightly differs between Windows and Linux.

For Windows:

C:\>stpnetutil --list-interfaces

stpnetutil v1.4 - STreamPlug network utility

Index: 1
Name : \Device\NPF_{4DA37FDC—6947—490D—B3B4—EDCDE90183BF}
Description: Microsoft
MAC : 00:11:22:33:44:55
Link : DOWN
IP Adddr : 167.4.76.254
Netmask : 255.255.255.128

Index: 2
Name : \Device\NPF_{46C5767A—1047—4BOS—BOB3—1B570F627E14}
Description: Intel (R) 82577LM Gigabit Network Connection
MAC : 00:aa:bb:cc:dd:ee

36/57 DoclD028797 Rev 1 Kkys

UM2004

stpnetutil

B.3.3

)

Link : UP
IP Adddr : 167.4.73.46
Netmask : 255.255.255.128

It is known that the wired LAN adapter is the correct interface and that is shown at the
Index 2. When using Windows it is easier to refer to the network interface by the index
rather than by the name. To tell stpnetutil to use the Index 2 interface it is specified as
follows:

stpnetutil --if-index=2
For Linux:

stpnetutil --list-interfaces

stpnetutil v1.4 - STreamPlug network utility

Index: 1
Name : etho
MAC : 00:11:22:33:44:55
Link . UP
IP Adddr : 192.168.1.5
Netmask : 255.255.255.128
Netmask : 0.0.0.0

Index: 2
Name : ethl
MAC : 00:aa:bb:cc:dd:ee
Link . UP

Index: 3
Name : lo
MAC : 00:00:00:00:00:00
Link : UP
IP Adddr : 127.0.0.1
Netmask : 255.0.0.0
Netmask : 0.0.0.0

In Linux the --if-index option also can be used, but it is also common to use the interface
name. In the above example, ethQ is the interface that is desired; this interface is listed at
the Index 1. This interface can be selected by using the name as follows:

)

% stpnetutil --if-name=ethoO

The interface index can also be used as it was in the Windows example above:

o

$ stpnetutil --if-index=1

For the remainder of this document the --if-index format will be used.

Discovery and specifying a STP device

stpnetutil is designed to exchange Ethernet packets with the STreamPlug modem. To do
this the MAC address of the STP device to talk to is needed. The command-line options --
discover-all and --discover-local can be used to reveal all connected STP devices.

The option --discover-local will only reveal STP devices that are connected to the local wired
Ethernet interface. The option --discover-all, as the name suggests, will identify the same

DoclD028797 Rev 1 37/57

stpnetutil

UM2004

38/57

devices as --discover-local, as well as any STP devices that are connected over the
powerline.

For example, let's assume there are two STP devices, A and B. 'A' is connected to the
Ethernet port on my Windows workstation (at -if-index=1) and 'B' is only connected via
powerline.

% stpnetutil --if-index=1 --discover-local

stpnetutil v1.4 - STreamPlug network utility

Looking for STreamPlug devices on IfNdx:1...

press any key to stop and print summary.

Found Device # 1: MAC: 02:AB:01:B6:20:22, BuildID: 420elalalel2, Ver:stp
v1.1(l), Kernelld: streamplug-1l.la, AppVer:

Summary of Devices:
Found 1 device.:
Device MAC: 02:AB:01:B6:20:22
Device Type: Generic STreamPlug
Firmware Version: stp v1.1(1)
Firmware BuildID: 420elalalel2
Linux Kernel Version: streamplug-1.1la
Device UID: 001158B2B6202201
Hardware Name: Tatung M1i

Hardware Version: A

Notice that there is a locally connected STP device with a modem MAC address
02:AB:01:B6:20:22. The firmware version is “stp v1.1(l)” which means it is the STP Linux
version [as noted by (I) in the version name] of the STreamPlug release v1.1. This is the
selected device 'A'.

Consider the --discover-all option:

% stpnetutil --if-index=1 --discover-all

stpnetutil v1.4 - STreamPlug network utility

Looking for STreamPlug devices on IfNdx:1...

press any key to stop and print summary.

Found Device # 1: MAC: 02:AB:01:B6:20:22, BuildID: 420elalalel2, Ver:stp
v1.1(l), Kernelld: streamplug-1l.la, AppVer:

Found Device # 2: MAC: 02:AB:01:B6:20:36, BuildID: 220elalalcl2, Ver:stp
v1l.1l(b)

)

DoclD028797 Rev 1

UM2004

stpnetutil

B.3.4

)

Summary of Devices:
Found 2 devices.:
Device MAC: 02:AB:01:B6:20:22
Device Type: Generic STreamPlug
Firmware Version: stp v1.1(1)
Firmware BuildID: 420elalalel2
Linux Kernel Version: streamplug-1.1la
Device UID: 001158B2B6202201
Hardware Name: Tatung M1i

Hardware Version: A

Device MAC: 02:AB:01:B6:20:36
Device Type: Generic STreamPlug
Firmware Version: stp v1.1(b)
Firmware BuildID: 220elalaOcl2
Device UID: 001158B2B6203601
Hardware Name: Tatung M1i

Hardware Version: A

Two devices are shown. Device 'A' is shown as in the above example, as well as another
device with the MAC address 02:AB:01:B6:20:36, running the bridge version of STP release
v1.1.

When using the stpnetutil utility functions, as shown in --help, a single STP device to talk to
needs to be specified. This can be done by using the '--remote-mac' option, as follows:

% stpnetutil --if-index=1 --remote-mac=02:AB:01:B6:20:22

Examine firmware image

The '--info' option is useful in displaying version information for a firmware image file.

stpnetutil --info --firmware=generic-128MB-smi-rel-stp-vl.lbetal-bridge-
release-2c06301cl1812-FACTORY. stpupg

stpnetutil v1.4 - STreamPlug network utility

File info:
Type: Factory Firmware
BuildID: 2c06301cl812

Notice that the image type is “Type: Factory Firmware” and that the BuildID is
2c06301c1812.

stpnetutil --info --firmware=bridge-debug-620c34183cl2-UPGRADE.stpupg

stpnetutil v1.4 - STreamPlug network utility

DoclD028797 Rev 1 39/57

stpnetutil

UM2004

B.3.5

40/57

File info:
Type: Upgrade Firmware
BuildID: 620c34183cl2

Notice that the image type is “Type: Upgrade Firmware” and that the BuildID is
620c34183c12.

Setting the security key (NMK)

The --set-nmk option is used to set the NMK key for the STP device. This is a special
operation and has the following requirements:

e Can only be used with a locally connected STP device. 'Locally connected' means over
a wired Ethernet connection to the device, or via STP Linux. It cannot be used over the
powerline.

e Can only be used with '--remote-mac'. You cannot use '--discovery-local' or '--discover-
all'.

Example 3 If the MAC address of the device is not known, upon the first use, change the
NMK using '--discover-local' as follows:

stpnetutil --if-index=1 --discover-local

stpnetutil v1.4 - STreamPlug network utility

Looking for STreamPlug devices on IfNdx:1...

press any key to stop and print summary.

MAC: 02:AB:01:B6:20:22, BuildID:

streamplug-1.1la, AppVer:

Found Device # 1: 420elalalel2,

v1l.1(1l), KernelId:

Ver:stp

Summary of Devices:

Found 1 device.:

Device MAC:

Device Type:

Firmware Version:
Firmware BuildID:
Linux Kernel Version:
Device UID:

Hardware Name:

Hardware Version:

02:AB:01:B6:20:22
Generic STreamPlug
stp v1.1(1)
420elalalel2
streamplug-1.1la
001158B2B6202201
Tatung M1i

Notice there is a locally connected device at the MAC address 02:AB:01:B6:20:22. The the
'--set-nmk' command can be formed.

stpnetutil --if-index=1 --remote-mac=02:Ab:01:b6:02:22 --set-nmk --
nmk=HomePlugAV

In this example the NMK is forcibly being changed to the default 'HomePIlugAV'. This allows
for the recovery of a STP device for which the password has been lost.

S74

DoclD028797 Rev 1

UM2004

stpnetutil

B.3.6

)

When the command is run, the result is:

stpnetutil --if-index=1 --remote-mac=02:Ab:01:b6:20:22 --set-nmk -
nmk=HomePlugAV

stpnetutil v1.4 - STreamPlug network utility

Running setNmk

NMK Set successfully.

When completed successfully, observe the string: 'NMK Set successfully'. If the operation
fails note the following exchange:

stpnetutil --if-index=1 --remote-mac=02:Ab:01:b6:20:21 --set-nmk --
nmk=HomePlugAV

stpnetutil v1.4 - STreamPlug network utility

Running setNmk

Did not get response from device - check MAC address

Referring to the help for stpnetutil, it can be seen that the --nmk option takes a password.
This is different from the actual NMK. The NMK is a key that is derived (by using an
algorithm defined by the IEEE 1901 standard) from the password. For the purposes of
convenience when using the stpnetutil tool, the --nmk command line option accepts the

network membership password. For more information on converting network membership
passwords into keys, see Appendix E: Hashing passwords to keys on page 54.

Firmware update

Stpnetutil can be used to update STP firmware using the '--update' option. The STP device
can be specified with the '--remote-mac' or '--discover-local' options. When using multiple
STP devices it is recommended that you use the --remote-mac option to specify the device
you want to update.

Firmware update example:

stpnetutil --if-index=1 --remote-mac=02:AB:01:B6:20:22 --update --
nmk=HomePlugAV --firmware=stplnx-release-180al81c6212-UPGRADE. stpupg

In the above example the '--update' option along with the '--nmk' and '--firmware' options is
used. '--update' is used to signal the firmware update operation. '--nmk’ is used to provide
the network membership key that is set on the device. '--firmware' specifies the file
containing the update.

If an update fails to start, note the following:

stpnetutil --if-index=1 --remote-mac=02:AB:01:B6:20:22 --update --
nmk=HomePlugAV --firmware=stplnx-release-180al81c6212-UPGRADE. stpupg

stpnetutil v1.4 - STreamPlug network utility

Update starting..

11l Error 4: Timed out waiting for response from receiver. !!!

Progress: 84/3606832 (0.0%)

Done.

DoclD028797 Rev 1 41/57

stpnetutil UM2004

A successful update looks like:

stpnetutil --if-index=1 --remote-mac=02:AB:01:B6:20:22 --update --
nmk=HomePlugAV --firmware=stplnx-release-180al81c6212-UPGRADE. stpupg

stpnetutil v1.4 - STreamPlug network utility

Update starting..

Progress: 16984/3606832 (0.
Progress: 33884/3606832 (0.
Progress: 50784/3606832 (1.
Progress: 67684/3606832 (1.
Progress: 84584/3606832 (2.
Progress: 101484/3606832 (2.8%)

o\°

o°

w v B~ W u
o°
—_— — — — —

o\°

o°

Progress: 3481484/3606832 (96.
Progress: 3498384/3606832 (97.
Progress: 3515284/3606832 (97.
Progress: 3532184/3606832 (97.
Progress: 3549084/3606832 (98.
Progress: 3565984/3606832 (98.
Progress: 3582884/3606832 (99.
Progress: 3599784/3606832 (99.
Progress: 3606832/3606832 (100.0%)

o° oe

o°

o°

o°

o W w B VL U1 o u
o\

o\°

Done.

B.3.7 BSS list - display AV networks visible to a specific node

A request can be sent to a specific STP device and have it report on the powerline networks
(BSSs) that it can see using the '--bss-list' option.

stpnetutil --if-index=1 --remote-mac=02:AB:01:B6:20:22 --bss-list
stpnetutil v1.4 - STreamPlug network utility

Running bssList
2 BSSs found.

| -SNID:06, NID: c7a22bl04£f£f604, REMOTEBSS

+----> Beacon Age: 250955
Fo---> Reliability (F): 100
+---=> Reliability(P): 100
+----> Cur AGC: -8
+----> Min AGC: -8
+---=> Max AGC: -8
+----> NetworkMode: 2
+----> HybridMode: 2
+--=-=> Stei: 13
42/57 DoclD028797 Rev 1 Kkys

UM2004

stpnetutil

)

t---->
t---->
+---->
+---->
t---->
+---->
t---->
t---->
+---->
t---->
t---->
+---->

|—SNID:O9, NID: e32d84da7deb05, LOCALBSS

+---->
+---->
+---->
+---->
+---->
+---->
+---->
+---->
+---->
+---->
+---->
+---->
+---->
+---->
+---->
+---->
+---->
+---->
+---->
+---->
+---->

Notice from the data returned that there are two BSSs visible from the device

BeaconType:
Uncr:
Npsm:

NumSlots:
SlotUsage:
SlotID:
Aclss:
Hoip:
Rtsbf:
Bmcap:
Rsf:
Plevel:

Beacon Age:
Reliability (F) :
Reliability (P) :

Cur AGC:
Min AGC:
Max AGC:
NetworkMode:
HybridMode:
Stei:
BeaconType:
Uncr:

Npsm:
NumSlots:
SlotUsage:
SlotID:
Aclss:
Hoip:
Rtsbf:
Bmcap:

Rsf:
Plevel:

o o o o

0x1

O O O O O O o

250939
100
100

28
28
28

2

O O O o wvu N

0x1
0
0
0
0
0
0

0

02:ab:01:b6:20:22, SNID:06, NID: c7a22b104ff604, REMOTEBSS and SNID:09, NID:
e32d84da7deb05, LOCALBSS. Note that the SNIDs shown are not permanently assigned
and can change across reboots. The NIDs for these networks will not change unless the
user changes them.

SNID 9 is the network that the device 02:ab:01:b6:20:22 is connected to which can be seen
from the LOCALBSS designation. SNID 6 has a REMOTEBSS designation meaning the

device 02:ab:01:b6:20:22 is not attached to it, but it can hear it's beacon.

By examining the AGC values for these networks the signal strengths of the beacons that
are received by the device 02:ab:01:b6:20:22 can be seen. SNID has an AGC of -8 dB. The

DoclD028797 Rev 1

43/57

stpnetutil

UM2004

B.3.8

44/57

AGC values range from -12 dB to 48 dB where -12 dB represents high signal strength and
48 dB represents a very low signal. SNID 6 has an AGC of -8 dB. This means the beacon
manager for this is network is very close by. SNID 9 has an AGC of 28 dB which is an
indication that this beacon manager is farther away than the beacon manager of SNID 6.

The reliability measurements indicate how reliable the reception of this beacon is. Notice
that both SNIDs have a reliability (P) measurement of 100 which means the complete
beacon (P)ayload has been received 100% of the time. This is the greatest reliability.

Bridging information discovery

Stpnetutil provides a facility to reveal details about the current state of the source-aware
bridging that is used. Every device maintains a list of MAC addresses for devices that it is
locally bridging for.

There are three options that are used to collect the bridging information:

o -tei-list

e --tei-snapshot

e --tei-query

'--tei-list' asks the indicated STP device to report all the terminal equipment identifiers of
which it is aware.

stpnetutil --if-index=1 --remote-mac=02:ab:01:b6:20:22 --tei-list
stpnetutil v1.4 - STreamPlug network utility

Running teilist

TeiCount:2

5

9

Notice that two TEIs were returned: 5 and 9. Use the '--tei-snapshot' and '--tei-query' options
to query one of these TEls, 11 as shown below.

stpnetutil --if-index=1 --remote-mac=02:ab:01:b6:20:22 --tei-snapshot --
tei-query=>5

stpnetutil v1.4 - STreamPlug network utility

Running teilist

Tei:5 AddrCount:3

02:AB:01:B6:20:22 Local MAC
02:AB:02:B6:20:22 Local Bridged MAC
68:B5:99:F6:50:C0 Local Bridged MAC

Notice that there are three addresses in the local bridge table:
e 02:ab:01:b6:20:22 (modem)

o 02:ab:02:b6:20:22 (STP Linux)

e 68:b5:99:f6:50:C0O

)

DoclD028797 Rev 1

UM2004

stpnetutil

B.3.9

)

02:ab:01:b6:20:22 is the device that was queried so now it is clear that TEI 5 belongs to
02:ab:01:b6:20:22 and 68:b5:99:6:50 is the MAC address of the workstation on the network
used to do the query.

This makes a sense since the locally connected device is 02:ab:01:b6:20:22 and that it's
running STP Linux. The device at TEI 9 is the remote device. To query the TEI:

stpnetutil --if-index=1 --remote-mac=02:ab:01:b6:20:22 --tei-snapshot --
tei-query=9

stpnetutil v1.4 - STreamPlug network utility

Running teilist
Tei:9 AddrCount:1
02:AB:01:B6:20:36 Remote MAC

Notice that the remote MAC address for TEI 9 is 02:ab:01:b6:20:36. The only device being
bridged from that address is itself.

If a '--tei-query' is run on that device for TEI 9:
stpnetutil --if-index=1 -r 02:ab:01:b6:20:36 --tei-snapshot --tei-query=9
stpnetutil v1.4 - STreamPlug network utility

Running teilist

Tei:9 AddrCount:1

02:AB:01:B6:20:36 Local MAC

The remote device is now being queried and it is reporting its own MAC address as a “Local

MAC” as shown. Querying this same device about the TEI if the STP Linux device, TEI 5
results in:

stpnetutil --if-index=1 --remote-mac=02:ab:01:b6:20:36 --tei-snapshot --
tei-query=5

stpnetutil v1.4 - STreamPlug network utility

Running teilist

Tei:5 AddrCount:3

68:B5:99:F6:50:C0 Remote Bridged MAC
02:AB:02:B6:20:22 Remote Bridged MAC
02:AB:01:B6:20:22 Remote MAC

The MAC is the same as the earlier example, but now they are displayed as “Remote”.

Channel quality reporting

STP can report the calculated channel quality to stpnetutil. This is done through the use of
the '--chanqual-sub', '--chanqual-unsub’, and '--chanqual-listen' options. The feature works
by asking an STP device to relay all channel quality measurements to stpnetutil. This
feature is enabled on per a device basis which means you will receive measurements for all
devices that the STP device is communicating with. Channel quality is calculated when

a unicast communication is setup between two powerline devices.

DoclD028797 Rev 1 45/57

stpnetutil UM2004

The feature works by subscribing to an STP device for measurements and then listening for
those measurements to be received on stpnetutil. The example below shows a "--chanqual-
sub' option that will subscribe to measurements, followed by the '--chanqual-listen' option
with a value of 0 (zero) (which instructs stpnetutil to listen forever).

stpnetutil --if-index=1 -r 02:ab:01:b6:20:36 --chanqual-sub --chanqual-
listen=0

stpnetutil v1.4 - STreamPlug network utility

Running chanQual

Cnf Parse OKAY
Status: 1-Subscribed

Listening for ChanQual Reports

Report Received: TxAddr:02:AB:01:B6:20:36 ==> RxAddr:02:AB:01:B6:20:7E
LocalMac: 02:AB:01:B6:20:36

RemoteMac: 02:AB:01:B6:20:7E

Source: Remote

ResponseType: 0

NumTmi: 1

TmiA[0]: 5

NumInt: O

NewTmi: 5

Rsvdl: O
CodeRate: 1
Rsvd2: 0
CBLD[0000]: OF OF OF OF OF OF OF OF OF OF OF OF OA OA OA OA OA OA OA 0A 0A
0A 0OA 0A
CBLD[0024]: OA OA OA OA OA 08 06 04 00 04 04 06 08 08 08 08 08 08 08 08 06
06 06 06
CBLD[0048]: 08 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 OF OF OF
OF OF OF
CBLD[0072]: OF
OF 08 08
CBLD[0096]: 08 08 08 08 08 08 08 06 08 OA OA 08 0OA 08 0OA OA OA OA OA 0OA 0A
0A OA 0A
CBLD[0120]: OA OA OA OA OA OA OA OA OA OA OA OA OA OA OA OA OA 0OA 08 0A 0A
OF OF OF
CBLD[0144]: OF OF OF OF OF OF OF OF OA OA OA OA OA OA 0OA 0OA OA 0OA 0A 0A 0A
0A O0A 0A
CBLD[0168]: OA OA OA OA OA OA OA OA OA OA OA OA 0OA 0A 0OA 0A 0A 0A 0A 0A 0A
0A 0A OA
CBLD[0192]: OA OA OA OA OA OA OA OA OA OA OA OA 0OA OA 0OA 0OA OA OF OF OF OF
OF OF OF
CBLD[0216]: OF OF OF OF OF OF OF OF OF OF OF OF OF OA OA OA OA OA O0OA 0A 0A
0A OA 0A

46/57 DoclD028797 Rev 1 ‘YI

UM2004

stpnetutil

)

CBLD [0240] :

OA OA 0A

CBLD[0264] :

0OA OA 0A

CBLD[0288] :

0OA OA 0OA

CBLD[0312]:

OA 0A 0A

CBLD[0336] :

OA 0A 0A

CBLD[0360] :

OA 0A 0A

CBLD[0384] :

OA 08 08

CBLD[0408] :

08 08 08

CBLD[0432] :

06 06 06

CBLD [0456] :

04 04 04

CBLD [0480] :

OF OF OF

CBLD[0504] :

02 02 02

CBLD[0528] :

01 00 00

CBLD[0552] :

00 00 0O

CBLD[0576] :

00 00 00

CBLD[0600] :

00 00 00

CBLD[0624] :

00 00 00

CBLD[0648] :

OF OF OF

CBLD[0672] :

02 02 02

CBLD[0696] :

03 04 03

CBLD[0720] :

02 02 02

CBLD[0744] :

03 02 03

CBLD[0768] :

OF OF OF

CBLD[0792] :

02 03 03

CBLD[0816] :

02 02 02

0A

0A

0A

0A

OF

0A

0A

08

08

06

02

OF

01

00

00

00

00

00

OF

02

02

03

02

OF

02

0A

0A

0A

0A

OF

0A

0A

08

06

06

01

OF

02

00

00

00

00

00

OF

03

03

02

02

OF

02

0A

0A

OA

OA

OF

OA

0A

08

06

06

02

OF

02

00

00

00

00

00

OF

02

03

03

02

OF

02

0A

0A

0A

0A

OF

0A

08

08

06

06

04

OF

02

00

00

00

00

00

00

02

03

03

02

OF

03

0A

0A

0A

OA

OF

0A

0A

08

06

06

04

OF

02

00

00

00

00

00

01

02

03

03

02

OF

03

0A

0A

OA

OA

OF

OA

0A

08

06

06

04

OF

01

00

00

00

00

00

01

02

03

03

03

OF

03

0A

0A

0A

0A

OF

0A

0A

08

04

06

04

OF

01

00

00

00

00

00

00

02

02

03

03

02

0A

0A

0A

0A

OF

0A

0A

08

06

06

03

OF

00

00

00

00

00

01

01

03

02

03

03

OF

02

0A

0A

OA

OA

OF

0A

0A

08

06

06

04

OF

00

00

00

00

00

01

02

03

02

02

03

OF

01

0A

0A

0A

0A

OF

0A

0A

08

06

06

04

OF

00

00

00

00

00

01

02

02

02

02

03

OF

02

DoclD028797 Rev 1

0A

0A

0A

0A

0A

0A

0A

08

06

06

04

OF

02

00

00

00

00

01

02

02

02

03

02

OF

02

0A

0A

OA

OA

OA

OA

0A

08

06

04

04

OF

00

00

00

00

00

00

02

02

02

02

02

OF

02

0A

0A

0A

0A

0A

0A

0A

08

06

04

04

OF

00

00

00

00

00

01

02

02

03

03

03

OF

02

0A

0A

08

06

04

04

OF

00

00

00

00

00

01

02

02

02

03

03

OF

03

0A

0A

OA

OA

OA

0A

0A

08

06

04

04

01

00

00

00

00

00

01

02

02

03

03

02

OF

02

0A

0A

08

06

04

03

02

00

00

00

00

00

OF

02

02

03

03

OF

OF

02

0A

0A

0A

0A

0A

0A

0A

08

06

04

OF

02

00

00

00

00

00

OF

02

02

03

03

OF

OF

02

0A

0A

0A

0A

0A

0A

0A

08

06

04

OF

02

00

00

00

00

00

OF

02

03

02

03

OF

03

03

0A 0A 0OA

0A O0A 0OA

0OA OA 0OA

0A OA 0OA

0OA OA 0OA

0A OA OA

OA OA 08

08 08 08

06 06 06

04 04 04

OF OF OF

02 00 02

02 01 01

00 00 00

00 00 00

00 00 00

00 00 00

OF OF OF

02 02 01

03 02 02

02 02 02

02 02 03

OF OF OF

03 03 02

03 03 02

47/57

stpnetutil UM2004

CBLD[0840]: 02 02 01 01 02 02 01 01 00 02 02 02 02 03 02 02 02 02 02 02 02

02 03 03
CBLD[0864]: 02 02 03 03 02 02 02 02 02 02 02 03 02 02 02 03 02 02 02 02 02
03 03 03
CBLD[0888]: 03 02 02 02 02 02 02 02 03 03 03 03 03 03 03 03 03 03 03 04 03
02 03 04
CBLD[0912]: 04
04 04 04
CBLD[0936]: 04 04 04 04 04 04 OF OF OF OF OF OF OF OF OF OF OF OF 04 06 06
04 06 04
CBLD[0960]: 04 06 06 04 04 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06
06 06 06
CBLD[0984]: 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 08 08 06 06 06 06
06 06 06
CBLD[1008]: 06 06 06 06 06 06 08 06 06 06 06 06 06 06 08 08 06 06 08 06 06
08 08 08
CBLD[1032]: 08 08 08 06 06 06 06 06 06 08 08 06 06 06 06 06 06 06 06 08 08
08 08 08
CBLD[1056]: 08 08 06 06 06 06 06 08 08 08 08 08 08 08 OF OF OF OF OF OF OF
OF OF OF
CBLD[1080]: OF
OF OF OF
CBLD[1104]: OF
OF OF OF
CBLD[1128]: OF
OF OF OF

CBLD[1152] : OF OF OF

Report Received: TxAddr:02:AB:01:B6:20:7E ==> RxAddr:02:AB:01:B6:20:36
LocalMac: 02:AB:01:B6:20:36

RemoteMac: 02:AB:01:B6:20:7E

Source: Local

ResponseType: 0

NumTmi: 1

TmiA[0]: 5

NumInt: O

NewTmi: 5

Rsvdl: O
CodeRate: 1
Rsvd2: 0
CBLD[0000]: OF OF OF OF OF OF OF OF OF OF OF OF OA OA OA OA OA OA OA 0OA 0A
0A 08 0A
CBLD[0024]: OA OA 08 08 08 08 08 06 04 01 00 00 03 04 06 06 06 06 06 06 06
06 06 06
CBLD[0048]: 04 02 04 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 OF OF OF
OF OF OF
CBLD[0072]: OF
OF 08 08

48/57 DoclD028797 Rev 1 ‘YI

UM2004

stpnetutil

)

CBLD[0096] :

OA OA 0A

CBLD[0120] :

OF OF OF

CBLD[0144] :

0OA OA 0OA

CBLD[0168] :

OA 0A 0A

CBLD[0192] :

OF OF OF

CBLD[0216] :

OA 0A 0A

CBLD [0240] :

OA OA 0A

CBLD [0264] :

0OA OA 0OA

CBLD[0288] :

OA 0A 0A

CBLD[0312]:

OA 0A 0A

CBLD[0336] :

OA 0A 0A

CBLD[0360] :

OA OA 0A

CBLD[0384] :

OA OA 08

CBLD[0408] :

08 08 08

CBLD[0432] :

06 06 06

CBLD [0456] :

02 01 00

CBLD[0480] :

OF OF OF

CBLD[0504] :

04 04 03

CBLD[0528] :

02 02 02

CBLD[0552] :

00 00 0O

CBLD[0576] :

00 00 00

CBLD[0600] :

00 00 00

CBLD [0624] :

00 00 01

CBLD[06438] :

OF OF OF

CBLD[0672] :

04 03 04

0A

0A

OF

0A

0A

OF

0A

0A

0A

0A

OF

0A

0A

08

08

06

00

OF

03

02

00

00

00

01

OF

0A

0A

OF

0A

0A

OF

0A

0A

0A

0A

OF

0A

0A

0A

08

06

00

OF

04

01

00

00

00

01

OF

0A

0A

OF

OA

OA

OF

0A

0A

OA

OA

OF

OA

0A

OA

08

06

00

OF

03

01

00

00

00

00

OF

0A

0A

OF

0A

0A

OF

0A

0A

0A

0A

OF

0A

0A

08

08

06

00

OF

03

02

00

00

00

00

02

0A

0A

OF

OA

0A

OF

0A

0A

0A

OA

OF

0A

0A

0A

08

06

00

OF

03

01

00

00

00

01

02

0A

0A

OF

OA

OA

OF

0A

0A

OA

OA

OF

0A

0A

08

08

06

00

OF

03

02

00

00

00

01

02

0A

0A

OF

0A

0A

OF

0A

0A

0A

0A

08

06

02

02

00

00

00

00

02

02

08

0A

OF

0A

0A

OF

0A

0A

0A

0A

OF

0A

0A

08

08

06

04

OF

03

01

00

00

00

02

03

08

0A

OA

OA

OA

OF

0A

0A

OA

OA

OF

0A

0A

08

08

06

03

OF

03

01

00

00

00

02

03

06

0A

0A

0A

0A

OF

0A

0A

0A

0A

OF

0A

0A

08

08

06

04

OF

03

01

00

00

00

02

03

DoclD028797 Rev 1

04

0A

0A

0A

0A

OF

0A

0A

0A

0A

0A

0A

0A

08

08

06

04

OF

03

01

00

00

00

02

02

06

0A

OA

OA

OA

OF

0A

0A

OA

OA

0A

0A

0A

08

06

06

04

OF

03

00

00

00

00

02

03

08

0A

0A

0A

0A

OF

0A

0A

0A

0A

0A

0A

0A

08

08

06

04

OF

03

00

00

00

00

02

03

0A

0A

0A

0A

0A

0A

0A

0A

0A

08

08

06

04

OF

03

01

00

00

00

02

03

0A

0A

OA

OA

OA

0A

0A

0A

OA

OA

0A

0A

08

08

08

06

04

02

03

00

00

00

00

01

03

0A

0A

0A

0A

08

08

04

04

04

02

00

00

00

00

OF

04

0A

0A

0A

0A

0A

0A

0A

0A

0A

0A

0A

0A

0A

08

06

04

OF

04

01

00

00

00

01

OF

04

0A

0A

0A

0A

OF

0A

0A

0A

0A

0A

0A

0A

0A

08

06

04

OF

04

02

00

00

00

01

OF

03

0A 0A 0OA

0A O0A 0OA

0OA OA 0OA

0A OA 0OA

OF OF OF

0A OA OA

0A OA 0OA

0A OA 0OA

0OA OA 0OA

0A OA 0OA

0A OA OA

0A OA OA

0OA OA 08

08 08 08

06 06 06

04 04 04

OF OF OF

04 04 04

02 02 02

00 00 00

00 00 00

00 00 00

01 00 01

OF OF OF

04 03 03

49/57

stpnetutil

UM2004

50/57

CBLD[0696]: 04 04 03 03 03 04 04 04 04 04 03 04 04 03 04 04 04 04 04 04 04
04 04 04
CBLD[0720]: 04 04 04 04 04 04 04 04 04 04 04 04 04 03 04 04 04 04 04 04 04
04 04 04

CBLD[0744]: 04 04 04 04 04 04 04 04 04 03 04 04 04 04 04 04 04 04 04 04 03
04 04 04

CBLD[0768]: 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 OF OF OF OF OF OF
OF OF OF

CBLD[0792] : OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF 04 04 03 04
04 04 04

CBLD[0816]: 04 04 04 03 04 04 03 03 03 04 03 03 03 03 03 04 04 04 03 03 02
03 02 03

CBLD[0840]: 02 02 02 03 03 03 02 02 03 02 02 02 01 03 03 02 02 03 03 02 02
02 03 02

CBLD[0864]: 02 02 02 02 02 03 03 02 03 02 02 02 02 02 02 02 02 03 02 03 03
03 02 02

CBLD[0888]: 03 02 03 02 02 03 03 03 03 02 02 02 01 02 03 02 02 03 03 03 00
00 01 02

CBLD[0912]: 02 03 03 03 03 03 02 02 02 03 03 02 03 04 04 04 04 04 03 03 04
04 03 03

CBLD[0936]: 03 04 04 04 04 04 OF OF OF OF OF OF OF OF OF OF OF OF 04 04 04
04 04 04
CBLD[0960]: 04
06 04 04

CBLD[0984]: 04 04 04 04 04 04 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06
06 06 06

CBLD[1008]: 06
06 06 06

CBLD[1032]: 04 06
06 06 06

CBLD[1056]: 06 06 06 06 06 08 06 06 06 06 06 06 08 06 OF OF OF OF OF OF OF
OF OF OF

CBLD[1080]: OF
OF OF OF

CBLD[1104]: OF
OF OF OF

CBLD[1128]: OF
OF OF OF

CBLD[1152] : OF OF OF

It is beneficial to understand the basic mechanism of the powerline communication and how
it pertains to the channel quality measurements. With any two powerline devices A and B,
the communications channel between them is asymmetrical. That is to say that the channel
quality from A to B is not necessarily the same as B to A. To accommodate for this, two
receive channel quality measurements are performed, one at A and one at B. The channel
quality measurements reported to stpnetutil will reflect this with two measurements for each
link between any two powerline devices.

)

DoclD028797 Rev 1

UM2004

stpnetutil

)

In the example data above the notice two reports. The first is labeled:
Report Received: TxAddr:02:AB:01:B6:20:36 ==> RxAddr:02:AB:01:B6:20:7E

And the second:

Report Received: TxAddr:02:AB:01:B6:20:7E ==> RxAddr:02:AB:01:B6:20:36
Note that the MAC addresses are mirrored between the two reports. In the first, the TxAddr
is 02:ab:01:b6:20:36. This means that the report reveals the channel quality of

transmissions from the TxAddr to the RxAddr. The second report contains the mirrored MAC
addresses which reveal the channel quality for transmissions in the reverse direction.

The channel quality report represents the raw channel quality data. The measurement is
comprised of the CodeRate and the CBLD data.

CodeRate is defined as 0 = 2 rate and 1 = 16/21 rate. The CBLD (“Carrier Bit LoaD”) data
represents 1 carrier per byte, where:

Table 12. CBLD data

CBLD Bits/carrier
0x00 0

0x01 1

0x02 2

0x03 3
0x04 4
0x06 6
0x08 8
0x0A 10
O0xOF Disabled

CBLD data of OxOF indicates that the carrier is disabled (not include in the tone mask to
comply with regulatory requirements). To calculate the raw channel quality, add up all the
CBLD data, ignoring the 0xOF values, and then multiply that sum by the CodeRate. For
example, if the sum of CBLD was 5796 (for example) and the CodeRate was 1, then:

Raw channel quality = 5796 * 16/21 = 4,416 bits/(OFDM) symbol

DoclD028797 Rev 1 51/57

Considerations for pre-programming NAND devices with STreamPlug firmware UM2004

Appendix C Considerations for pre-programming NAND

Note:

52/57

devices with STreamPlug firmware

This section is provided for informational purposes. Please contact ST for details on using
the tools mentioned in this section.

To manage the reliable boot from NAND devices, a special block header is needed for each
NAND block in the firmware image. The NAND block header contains information to allow
for block duplication (redundancy) and image identification via an 'Image Number'. The
image number assignment is fixed to 0==factory, 1==upgrade.

There is a utility in the SDK to add these block headers to a firmware image - 'nandfwgen’.
An example of using this tool is:
$ nandfwgen --infile=rel-stp-1.1l-bridge-release-1a0e201c2812-FACTORY.fw.bin

--outfile=rel-stp-1.1-bridge-release-1a0e201c2812-FACTORY.fw.bin.nand --
imgnum=0 --pagedatasize=2048 --pagesparesize=64 --pagesperblock=64

nandfwgen v0.1 - Generation utility for ai2l100 NAND firmware init file
Writing DATA - Blk= , Seqg=0
Writing DATA - Blk= , Seg=1
Writing DATA - Blk= , Seg=2

0

1

2
Writing DATA - Blk= 3, Seg=3
Writing DATA - Blk= 4, Seg=4
Writing DATA - Blk= 5
Writing DATA - Blk= 6
Writing DATA - Blk= 7
8

Writing DATA - Blk=

, Seqg=5
, Seqg=6
, Seqg=7
, Seqg=8

The output of this tool will be a file containing a block header for every block. This file

contains only the data portion of the NAND and does not include any spare area data (ECC
data).

Depending on the type of programmer, it may be necessary to pre-compute the ECC data
using the BCH4 algorithm that the STreamPlug bootloader uses to perform error correction.
There also exists a tool to generate the ECC data. Please contact ST for support if mass
programming of NAND devices is needed.

)

DoclD028797 Rev 1

UM2004 STreamPlug boot source selection

Appendix D STreamPlug boot source selection

The boot source device is set with the BMODE pins on the STreamPlug. The values in
Table 13 are supported.

Table 13. Boot sources

SOC_CFG_BMODE[3:0] Boot source

0000 Serial Flash (3-byte addressing)
0001 Serial Flash (2-byte addressing)
0010 Parallel NAND Flash (8-bit)

0011 Parallel NAND Flash (16-bit)

0100 UART1 (on MFIO group G20)

0101 UART2 (on MFIO group G21)

0110 Parallel NOR Flash (8-bit)

0111 Parallel NOR Flash (16-bit)

‘W DocID028797 Rev 1 53/57

Hashing passwords to keys UM2004

Appendix E Hashing passwords to keys

E.1

E.1.1

54/57

Keys such as the NMK (network membership key), and the DAK (device authorization key)
are derived from human readable passwords. The SDK contains a tool that can be used to
generate the keys as well as create random DAKSs for use in a production environment.

hpav-keygen tool

Running the tool without any arguments shows help and usage.
$ hpav-keygen
hpav-keygen v0.1 - STreamPlug password/key gen tool

Error: One option: --nmk OR --dak OR --devpw must be specified.

Usage: hpav-keygen [OPTION...]

-n, --nmk Generate NMK from supplied password

-d, --dak Generate DAK from supplied password

-d, --devpw Generate random device PW

-i, --pwstring Password string

-1, --pwfile Password file, omit, or specify - to read from stdin.

-o, --outfile Output file to write key to. omit, or specify - for
stdout.

-h, --help Show usage.

Using the tool can be easily understood looking at the help. Below are some usage
examples.

Generating NMK

Using the command line supplied password:
$ hpav-keygen --nmk --pwstring=HomePlugAV
hpav-keygen v0.1 - STreamPlug password/key gen tool

50 d3 e4 93 3f 85 5b 70 40 78 4d f£8 15 aa 8d b7

Using a password supplied from a file:

$ echo HomePlugAV > pw.txt

$ hpav-keygen --nmk --pwfile=pw.txt

hpav-keygen v0.1 - STreamPlug password/key gen tool

50 d3 e4 93 3f 85 5b 70 40 78 4d f8 15 aa 8d b7

)

DoclD028797 Rev 1

UM2004

Hashing passwords to keys

E.1.2

Note:

)

Generating device password and DAK

The hpav-keygen utility can be used to generate a random device password following the
recommended rules for device passwords. This example will show how to generate
a device password and also to generate a DAK corresponding to the password.

The algorithm for generating the DAK is different from the algorithm to generate the NMK.
(Running --dak and --nmk on the same --pwstring will yield different keys).

Generate a random device password:
$ hpav-keygen -devpw
hpav-keygen v0.1 - STreamPlug password/key gen tool

CECK-FMLD-77BZ-GHLZ

Generate a random password, save to a file, and generate a DAK also saved to a file:

$ hpav-keygen --devpw | tee pw.txt | hpav-keygen --dak --outfile=dak.txt
hpav-keygen v0.1 - STreamPlug password/key gen tool

hpav-keygen v0.1 - STreamPlug password/key gen tool

$ cat pw.txt
KEL8-W8D8-K8N8-VRC3

$ cat dak.txt
7d 2e fd ea af 5f 75 b7 fd 1f f£1 19 7e c5 c9 81

DoclD028797 Rev 1 55/57

Revision history

UM2004

Revision history

56/57

Table 14. Document revision history

Date

Revision

Changes

02-Feb-2016

1

Initial release.

DoclD028797 Rev 1

)

UM2004

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics — All rights reserved

)

DoclD028797 Rev 1 57/57

	1 SDK setup
	1.1 Release package
	1.2 Installing SDK
	1.3 Windows® tools

	2 Firmware releases
	3 Firmware regions and boot sequence
	3.1 Boot sequence
	Example boot scenarios

	3.2 Firmware integrity
	Network update

	3.3 Upgrade image rationale
	3.4 Boot recovery mode
	Manually entering boot recovery mode

	4 Hardware target (board) configuration
	4.1 Introduction
	4.2 User board configurations
	4.3 Board configuration detail
	4.3.1 Board configuration - board.cfg
	Table 1. Configuration parameters (board.cfg)
	Table 2. File location spec. (board.cfg)

	4.3.2 Memory map
	4.3.3 Manufacturer parameters and the mfct.xml configuration file
	Table 3. hpav.core
	Table 4. virtif
	Table 5. ethernet
	Table 6. target.smiconfig
	Table 7. target.nandconfig
	Table 8. target.cmdline
	Table 9. target.info
	Table 10. mfct.writeprot
	Table 11. target.recovery

	4.3.4 HPAV modem configuration

	5 Assembling firmware binaries
	5.1 stpmake - tool overview
	5.2 stpmake - common options
	5.2.1 --list boards
	5.2.2 --outbase
	5.2.3 -- format
	5.2.4 --stpfw_path
	5.2.5 --vmlinux
	5.2.6 --infile
	5.2.7 --type
	5.2.8 --board

	5.3 stpmake - usage examples
	5.3.1 Using stpmake to build sfwloader and stpupg UPGRADE images for bridge firmware
	5.3.2 Using stpmake to build sfwloader and stpupg UPGRADE images for Linux firmware
	5.3.3 Using stpmake to build sfwloader and stpupg FACTORY images for bridge firmware
	5.3.4 Using stpmake to build sfwloader and stpupg FACTORY images for Linux firmware
	5.3.5 Using stpmake to build sfwloader and stpupg rootfs images
	5.3.6 Using stpmake to build raw FACTORY images for bridge firmware

	6 Loading firmware
	6.1 Load using sfwloader
	6.2 Load using stpnetutil

	Appendix A sfwloader
	Appendix B stpnetutil
	B.1 Overview of tool
	B.2 Prerequisites
	B.3 Stpnetutil usage
	B.3.1 Help and usage
	B.3.2 Finding and selecting network interface
	B.3.3 Discovery and specifying a STP device
	B.3.4 Examine firmware image
	B.3.5 Setting the security key (NMK)
	B.3.6 Firmware update
	B.3.7 BSS list - display AV networks visible to a specific node
	B.3.8 Bridging information discovery
	B.3.9 Channel quality reporting
	Table 12. CBLD data

	Appendix C Considerations for pre-programming NAND devices with STreamPlug firmware
	Appendix D STreamPlug boot source selection
	Table 13. Boot sources

	Appendix E Hashing passwords to keys
	E.1 hpav-keygen tool
	E.1.1 Generating NMK
	E.1.2 Generating device password and DAK

	Revision history
	Table 14. Document revision history

