

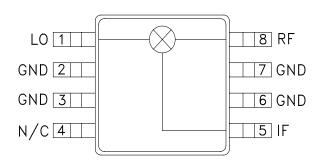
HMC220AMS8 / 220AMS8E

v00.0211

GaAs MMIC SMT DOUBLE-BALANCED MIXER, 5 - 12 GHz

Typical Applications

The HMC220AMS8 / HMC220AMS8E is ideal for:


- Microwave Radios
- VSAT

Features

Ultra Small Package: MSOP8

Conversion Loss: 8.5 dB Wideband IF: DC - 4 GHz

Functional Diagram

General Description

The HMC220AMS8 & HMC220AMS8E are ultra miniature double-balanced mixers in 8 lead plastic surface mount packages (MSOP). This passive MMIC mixer is constructed of GaAs Schottky diodes and novel planar transformer baluns on the chip. The device can be used as an upconverter, downconverter, bi-phase (de)modulator, or phase comparator. The consistent MMIC performance will improve system operation and assure regulatory compliance.

Electrical Specifications, $T_A = +25^{\circ}$ C, As a Function of LO Drive

Parameter	LO = +13 dBm IF = 100 MHz		LO = +13 dBm IF = 100 MHz		LO = +10 dBm IF = 100 MHz		Units			
	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Frequency Range, RF & LO		5 - 10			10 - 12			5.9 - 10		GHz
Frequency Range, IF		DC - 4			DC - 4			DC - 3.5		GHz
Conversion Loss		7.0	10		8.5	10.5		7.5	10	dB
Noise Figure (SSB)		7.0	10		8.5	10.5		7.5	10	dB
LO to RF Isolation	17	25		13	18		17	25		dB
LO to IF Isolation	20	28		14	20		20	28		dB
IP3 (Input)	14	17		16	21		13	16		dBm
1 dB Gain Compression (Input)	4	8		4	8		5	8		dBm

HMC220A* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

• HMC220AMS8 Evaluation Board

DOCUMENTATION

Data Sheet

HMC220A Data Sheet

REFERENCE MATERIALS 🖵

Quality Documentation

 PCN: MS, QS, SOT, SOIC packages - Sn/Pb plating vendor change

DESIGN RESOURCES 🖵

- HMC220A Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC220A EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

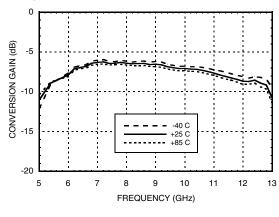
TECHNICAL SUPPORT

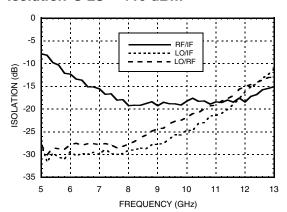
Submit a technical question or find your regional support number.

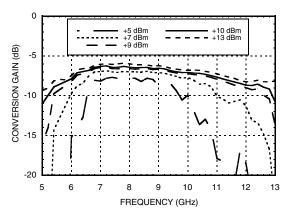
DOCUMENT FEEDBACK 🖳

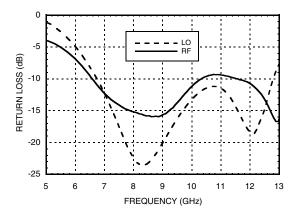
Submit feedback for this data sheet.

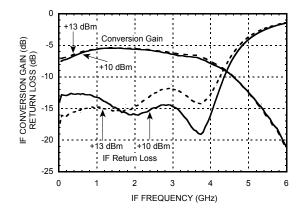
GaAs MMIC SMT DOUBLE-

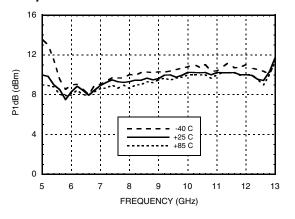

BALANCED MIXER, 5 - 12 GHz


v00.0211


Conversion Gain vs Temperature @ LO = +10 dBm

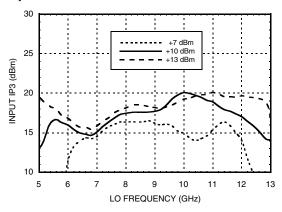

Isolation @ LO = +10 dBm


Conversion Gain vs. LO Drive

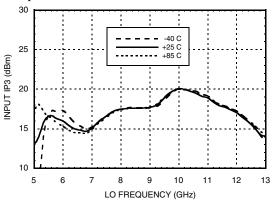

Return Loss @ LO = +10 dBm

IF Bandwidth vs LO Drive Conversion Gain and Return Loss

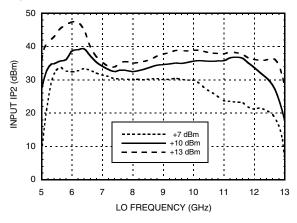
P1dB vs.
Temperature LO = +10 dBm

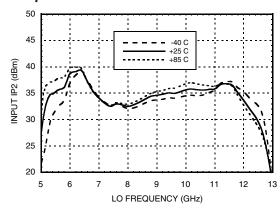


v00.0211



GaAs MMIC SMT DOUBLE-BALANCED MIXER, 5 - 12 GHz


Input IP3 vs. LO Drive


Input IP3 vs. Temperature @ LO = +10 dBm

Input IP2 vs. LO Drive

Input IP2 vs. Temperature @ LO = +10 dBm

HMC220AMS8 / 220AMS8E

v00.0211

GaAs MMIC SMT DOUBLE-BALANCED MIXER, 5 - 12 GHz

MxN Spurious Outputs

	nLO				
mRF	0	1	2	3	4
0	xx	3	10	7	54
1	11	0	28	31	35
2	53	62	53	58	61
3	73	69	74	66	73
4	> 85	> 85	> 85	> 85	> 85

RF = 7.5 GHz @ -10 dBm LO = 7.6 GHz @ +10 dBm

All values in dBc below the IF power level (-1RF + 1LO)

Harmonics of LO

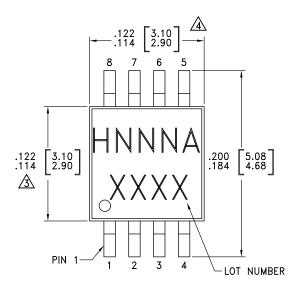
LO Freq.	nLO Spur at RF Port					
(GHz)	1	2	3	4		
5.5	29	30	42	69		
7	29	27	28	66		
8.5	26	35	47	70		
10	22	40	44	67		
11.5	18	49	51	66		
13	13	63	62	xx		

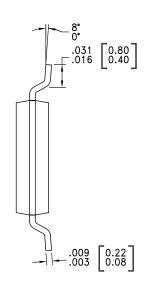
LO = +10 dBm

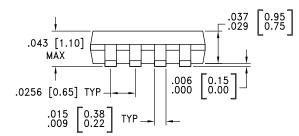
Values in dBc below input LO level measured at the RF port.

Absolute Maximum Ratings

RF / IF Input	+13 dBm
LO Drive	+27 dBm
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A




v00.0211



GaAs MMIC SMT DOUBLE-BALANCED MIXER, 5 - 12 GHz

Outline Drawing

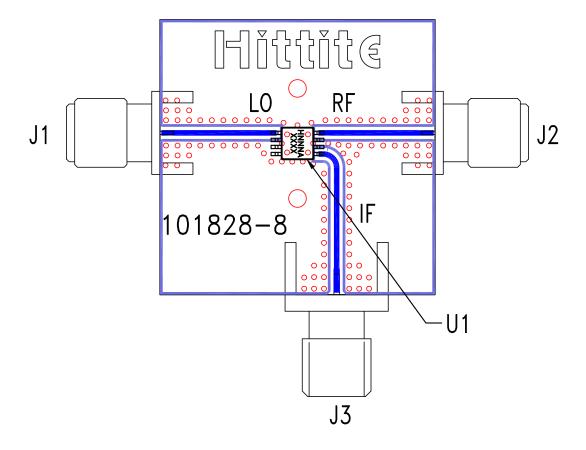
NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS] \wedge
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC220AMS8	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H220A XXXX
HMC220AMS8E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H220A XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX



v00.0211

GaAs MMIC SMT DOUBLE-BALANCED MIXER, 5 - 12 GHz

Evaluation Circuit Board

List of Materials for Evaluation PCB 101830 [1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
U1	HMC220AMS8 / HMC220AMS8E Mixer
PCB [2]	101828 Evaluation Board

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350