High Voltage Rectifiers $V_{RRM} = 4800 V$ $I_{F(AV)M} = 10.2 A$ | V _{RRM} | Standard
Types | Power Designation | | |------------------|-------------------|-------------------|--| | 4800 | UGE 0221 AY4 | Si-E 1750 / 775-4 | | | Symbol | Conditions | | Ratings | | |---|--|--|---------------------------|----------------| | I _{F(RMS)} | air self cooling, | T _{amb} = 45°C | 16 | А | | | | without cooling platewith colling plate | 3.8
5.4 | A
A | | | forced air cooling v = 3 m/s, | g:
T _{amb} = 35°C | | | | | | without cooling platewith cooling plate | 7.0
10.2 | A
A | | | oil cooling, | T _{amb} = 35°C
- without cooling plate
- with cooling plate | 10.2
10.2 | A
A | | P _{RSM} | T _(vj) = 150°C; | t _p = 10 μs | 3.4 | kW | | I _{FSM} | non repetitive, 50 $T_{(vj)} = 45^{\circ}C;$ | 0 c/s (for 60 c/s add 10%) $t_p = 10 \text{ ms}$ | 180 | А | | | $T_{(vj)} = 150^{\circ}C;$ | $t_p = 10 \text{ ms}$ | 140 | Α | | $\begin{array}{l} \textbf{T}_{\text{amb}} \\ \textbf{T}_{\text{stg}} \\ \textbf{T}_{(\text{vj})} \end{array}$ | | | -40+150
-40+150
150 | °C
°C
°C | | Weight | | | 120 | g | | Symbol | Conditions | | Characteristic Values | | |-----------------|---|-----------------|-----------------------|------------------| | I _R | $T_{(vj)} = 150^{\circ}C;$ | $V_R = V_{RRM}$ | ≤ 2 | mA | | V _F | $I_F = 30 \text{ A}$
$T_{(vj)} = 25^{\circ}\text{C}$ | | 4.8 | V | | V _{TO} | $T_{(vj)} = 150^{\circ}C$
$T_{(vj)} = 150^{\circ}C$ | | 2.55
90 | V
mΩ | | а | f = 50Hz | | 5 x 9,81 | m/s ² | | M _d | | | 8 | Nm | ## **Features** - · Hermetically sealed Epoxy - Use in oil - · Avalanche characteristics ### **Applications** - X-Ray equipment - · Electrostatic dust precipitators - · Electronic beam welding - Lasers - · Cable test equipment ## **Advantages** - Simple mounting - Improved temperature and power cycling - Reduced protection circuits - Series and parallel operation **Dimensions in mm (1 mm = 0.0394")** Data according to IEC 60747-2 IXYS reserve the right to change limits, test conditions and dimensions. Fig. 1: Forward characteristics Instantaneous forward current I $_{\rm F}$ as a function of instantaneous forward voltage drop V $_{\rm F}$ for junction temperature T $_{\rm (vj)}$ = 25°C and T $_{\rm (vj)}$ = 150°C a = Mean value characteristic b = Limit value characteristic Fig. 2: Characteristics of maximum permissible current The curves show the non repetitive peak one cycle surge forward current $I_{\rm FSM}$ as a function of time t and serve for rating protective devices. $\begin{array}{ll} a = Initial \ state \\ b = Initial \ state \end{array} \qquad \begin{array}{ll} T_{(vj)} = \ 45^{\circ}C \\ T_{(vj)} = \ 150^{\circ}C \end{array}$ Fig. 3: Power loss Non repetitive peak reverse power loss $P_{\rm RSM}$ as a function of time t, $T_{\rm (v)}=150{\rm ^{\circ}C}$ Fig. 4: Load diagramm Mean forward current $I_{F(AV)}$ of <u>one</u> module for a sine half wave for various cooling modes as a function of the cooling medium temperature T_{amb} for a resistive load (horizontal mounting). #### **Cooling modes** 1 = air self cooling 2 = air self cooling 3 = forced air cooling 4 = forced air cooling 5 = oil cooling 6 = oil cooling with cooling plate with cooling plate