

High Voltage Rectifiers

 $V_{RRM} = 4800 V$ $I_{F(AV)M} = 10.2 A$

V _{RRM}	Standard Types	Power Designation	
4800	UGE 0221 AY4	Si-E 1750 / 775-4	

Symbol	Conditions		Ratings	
I _{F(RMS)}	air self cooling,	T _{amb} = 45°C	16	А
		without cooling platewith colling plate	3.8 5.4	A A
	forced air cooling v = 3 m/s,	g: T _{amb} = 35°C		
		without cooling platewith cooling plate	7.0 10.2	A A
	oil cooling,	T _{amb} = 35°C - without cooling plate - with cooling plate	10.2 10.2	A A
P _{RSM}	T _(vj) = 150°C;	t _p = 10 μs	3.4	kW
I _{FSM}	non repetitive, 50 $T_{(vj)} = 45^{\circ}C;$	0 c/s (for 60 c/s add 10%) $t_p = 10 \text{ ms}$	180	А
	$T_{(vj)} = 150^{\circ}C;$	$t_p = 10 \text{ ms}$	140	Α
$\begin{array}{l} \textbf{T}_{\text{amb}} \\ \textbf{T}_{\text{stg}} \\ \textbf{T}_{(\text{vj})} \end{array}$			-40+150 -40+150 150	°C °C °C
Weight			120	g

Symbol	Conditions		Characteristic Values	
I _R	$T_{(vj)} = 150^{\circ}C;$	$V_R = V_{RRM}$	≤ 2	mA
V _F	$I_F = 30 \text{ A}$ $T_{(vj)} = 25^{\circ}\text{C}$		4.8	V
V _{TO}	$T_{(vj)} = 150^{\circ}C$ $T_{(vj)} = 150^{\circ}C$		2.55 90	V mΩ
а	f = 50Hz		5 x 9,81	m/s ²
M _d			8	Nm

Features

- · Hermetically sealed Epoxy
- Use in oil
- · Avalanche characteristics

Applications

- X-Ray equipment
- · Electrostatic dust precipitators
- · Electronic beam welding
- Lasers
- · Cable test equipment

Advantages

- Simple mounting
- Improved temperature and power cycling
- Reduced protection circuits
- Series and parallel operation

Dimensions in mm (1 mm = 0.0394")

Data according to IEC 60747-2

IXYS reserve the right to change limits, test conditions and dimensions.

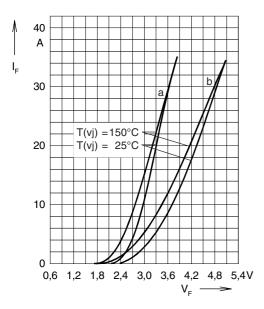


Fig. 1: Forward characteristics

Instantaneous forward current I $_{\rm F}$ as a function of instantaneous forward voltage drop V $_{\rm F}$ for junction temperature T $_{\rm (vj)}$ = 25°C and T $_{\rm (vj)}$ = 150°C a = Mean value characteristic

b = Limit value characteristic



Fig. 2: Characteristics of maximum permissible current

The curves show the non repetitive peak one cycle surge forward current $I_{\rm FSM}$ as a function of time t and serve for rating protective devices.

 $\begin{array}{ll} a = Initial \ state \\ b = Initial \ state \end{array} \qquad \begin{array}{ll} T_{(vj)} = \ 45^{\circ}C \\ T_{(vj)} = \ 150^{\circ}C \end{array}$

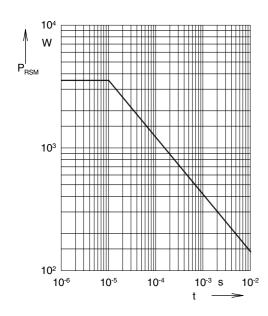


Fig. 3: Power loss Non repetitive peak reverse power loss $P_{\rm RSM}$ as a function of time t, $T_{\rm (v)}=150{\rm ^{\circ}C}$

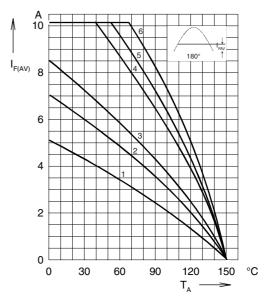


Fig. 4: Load diagramm

Mean forward current $I_{F(AV)}$ of <u>one</u> module for a sine half wave for various cooling modes as a function of the cooling medium temperature T_{amb} for a resistive load (horizontal mounting).

Cooling modes

1 = air self cooling
2 = air self cooling
3 = forced air cooling
4 = forced air cooling
5 = oil cooling
6 = oil cooling
with cooling plate
with cooling plate