Wireless Communication on iMX Developer’s Kits

Wireless Communication on
IMX Developer’s Kits

@ Embedded
Artists

Wireless Communication on iMX Developer’s Kits

Embedded Artists AB
Davidshallsgatan 16

SE-211 45 Malmo

Sweden

http://www.EmbeddedArtists.com

Copyright 2016 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a
commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Send your comments
by using the contact form: www.embeddedartists.com/contact.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered
trademarks, or registered service marks of their respective owners and should be treated as such.

Copyright 2016 © Embedded Artists AB RevA

http://www.embeddedartists.com/

Wireless Communication on iMX Developer’s Kits Page 3

Table of Contents

1 Document Revision HiStOryccccccceeeeiiiieeeeeeennns 5
2 INtrodUCtioN ..cccvvviiiiiiiiiiieeeeeee e 6
2.1 CONVENTIONS .oiiiiiiiiiiieeiie et 6
3 Communication interfacesccccccovvivvvveeennn. 7
Bl PCIE i 7
3.2 SDIO 8
3.3 XBEE T UART Lt 8
34 USB . 8
A WI-Fi oo 9
A1 INTFOTUCTION ot 9
4.2 General reqUIrBMENTSiiiiiieiiiiieeeeiet e 9
4.2.1 Wireless support in the Kernelcccvvviviviviviuininiiiiiniiininennnnn. 9
4.2.2 PCle supportin the Kernel...........cccuvvviiiiiiiiiiiiiiiiiiieiiiiiiiinnnnen. 9
4.2.3 ReQUIrEA tOOIS ..ot 9
4.3 Module: Intel 7260 (PCIE)uuurrreiriiiiiiiiiiieiririernieinrniernnnnnenenrnenrnnnn. 9
4.3.1 Kernel configuration

4.3.2 FIMMWAEIE ..ottt
4.4 Module: D-Link DWA-121 (USB)....ccuuiiiiieiiiiiiiiiiee e 11
4.4.1 Kernel configurationccceeoiiieeiiiiieiiiiee e 11
4.4.2 FIMMWAIE ...oiiiiiiiiiiiice et 11
4.5 Connect manually from consolecccoiiiiiiii 12
4.6 Connect automatically during bootccceeiiiiiiiiiii 14
5 BIUELOOLN ..euviiiiiiiiiiiiii e 16
5.1 INTrOAUCTION .eviiiiiiiii i 16

5.2 General requirements

5.2.1 Bluetooth supportin the kernel...........cccoocoiiiiiiiiiiiii 16
5.2.2 ReqUIred t00ISooiiiiiiiiiiiie e 16
5.3 Module: Intel 7260 (PCIE)....ccovviviiiiiiiii e, 16
5.3.1 FIMMWAIE ..ot 16
5.4 Access /configure Bluetooth devices.........ccccccoiiiiiiiieiiinnininne. 17
5.5 Additional INKS.....cooiii e 19
6 XBee (UART)...oiiieeeeieeeeeeeeeee e, 20
6.1 INTFOAUCTION ..eeiiiiiiiie e 20
6.2 Module: XBee 802.15.4.......couueiiieeeeeee e 20
6.2.1 Flow Control

6.2.2 Software Alternative — GitHUD ..o 24
6.2.3 Software Alternative — Python XBee 2.2.3.........coooiiiiieiienniiinnn. 24
6.2.4 Software Alternative — PYthOnccccviiiiiiiiiiiii e 24

Copyright 2016 © Embedded Artists AB RevA

Wireless Communication on iMX Developer’s Kits Page 4

7 Cellular NEtWOIrKS ...coovviiiiiiiiiiceeceeeeee e 26
7.1 Introduction
7.2 Module: U-Blox TOBY-L210

7.2.1 AT Commands
7.2.2 Network

Copyright 2016 © Embedded Artists AB RevA

Wireless Communication on iMX Developer’s Kits

1 Document Revision History

Revision Date Description
A 2016-12-06 | First release

Copyright 2016 © Embedded Artists AB RevA

Wireless Communication on iMX Developer’s Kits Page 6

2 Introduction

This document describes different ways to add wireless functionality to an iMX Developer’s Kit. The
different wireless technologies and a selection of hardware modules implementing the technologies will
be presented. There will also be a description of how to connect the hardware modules to the
developer’s kit as well as how to use the wireless technology from within Linux.

There are many different iMX Developer’s Kits and this document refers to all of these kits collectively
as iMX Developer’s Kits. Please note that all available iMX Developer’s Kits may not support all the
presented wireless technologies or more specifically the interface used to communicate with a
hardware module.

All interfaces, needed tools and kernel configurations described in this document have been added /
enabled in the prepared images available at http://imx.embeddedartists.com/. To make changes to
your own build, see the Working with Yocto document which can be downloaded on each COM
board’s product page.

Additional documentation you might need is.
o The Getting Started document for the iMX Developer's Kit you are using.
e COM Carrier Board Datasheet
o EACOM Board Specification

2.1 Conventions

A number of conventions have been used throughout to help the reader better understand the content
of the document.

Constant width text —is used for file system paths and command, utility and tool names.

$ This field illustrates user input in a terminal running on the
development workstation, i.e., on the workstation where you edit,
configure and build Linux

This field illustrates user input on the target hardware, i.e.,
input given to the terminal attached to the COM Board

This field is used to illustrate example code or excerpt from a
document.

This field is used to highlight important information

Copyright 2016 © Embedded Artists AB RevA

http://imx.embeddedartists.com/

Wireless Communication on iMX Developer’s Kits Page 7

3 Communication interfaces

The iMX Developer’s Kits don’t have any onboard module directly supporting a wireless technology.
Instead a module can be connected to one of the many interface connectors available on the COM
Carrier Board.

The picture below shows the connectors on the COM Carrier board that is typically used when
connecting wireless technologies to the iMX Developer’s Kits. It is of course also possible to use any of
the expansion connectors, but this typically requires an adapter board to be used between the
expansion connector and the module. Because of this the expansion connectors are not described in
this document.

XBee connector, J17
(UART interface)

i+ £

micro-SD connector,
J11 (SDIO)

140157

HanRun w

|
HR911060C 1, |

1329 A\ '

Figure 1 — Communication interfaces on COM Carrier Board

USB Host, J9

31 PCle
PCI Express (Peripheral Component Interconnect Express), officially abbreviated as PCle, is a high-
speed serial computer expansion bus standard.

The COM Carrier board has one socket (J18) for PCle mini. The PCle socket includes one USB port
and some wireless boards use the PCle form factor but only use the USB part of the connector.

https://en.wikipedia.org/wiki/PCl_Express

NOTE: Not all iMX COM Boards support PCle

Copyright 2016 © Embedded Artists AB RevA

https://en.wikipedia.org/wiki/Serial_communication
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Expansion_bus
https://en.wikipedia.org/wiki/PCI_Express

Wireless Communication on iMX Developer’s Kits

3.2 SDIO

SDIO (Secure Digital Input Output) is an interface that extends the functionality of devices by using a
standard SD card slot (J11) to give devices new capabilities. This could include GPS, Camera, Wi-Fi,
FM Radio etc. This interface is not as commonly as, for example, USB.

https://www.sdcard.org/developers/overview/sdio/index.html

3.3 XBee/UART

The different i.MX processors have varying number of UARTSs and one of them is always designated
for the console. One of the free UARTS is connected to the XBee socket (J17) on the COM Carrier
board.

Several modules with different wireless technologies exist that use the XBee form factor. There are, for
example, modules supporting ZigBee, Wi-Fi and Bluetooth.

34 USB

USB, short for Universal Serial Bus, is an industry standard developed in the mid-1990s that defines
the cables, connectors and communications protocols used in a bus for connection, communication,
and power supply between computers and electronic devices.

The COM Carrier board has a dual USB Host type A connector (J9) with two USB2.0 Host interfaces. It
is quite common to use USB on a wireless module. There are, for example, many Wi-Fi modules using
the USB interface.

Copyright 2016 © Embedded Artists AB RevA

https://www.sdcard.org/developers/overview/sdio/index.html
https://en.wikipedia.org/wiki/Technical_standard
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Computer

Wireless Communication on iMX Developer’s Kits Page 9

4 Wi-Fi

4.1 Introduction

Wi-Fi is a technology that allows devices to connect to a wireless network (WLAN), mainly using the
2.4 gigahertz UHF and 5 gigahertz SHF ISM radio bands. A WLAN is usually password protected, but
may be open, which allows any device within its range to access the resources of the WLAN network.

A common way of adding Wi-Fi communication is to attach via USB but it is possible to use SDIO as
well as the XBee port.

4.2 General requirements

421 Wireless support in the kernel

The Linux kernel must be configured to be able to use Wi-Fi. This configuration is already done for the
COM boards.

o "Networking Support" - "RF switch subsystem support"
o "Networking Support" = "Wireless" > "cfg80211 wireless extensions compatibility"
This corresponds to the following configuration flags:

CONFIG RFKILL=y
CONFIG CFG80211 WEXT=y

422 PCle support in the kernel

When using the Intel 7260 module PCle must be supported in the Linux kernel. The PCI bus is
enabled on the COM boards supporting it. To do the configuration for other hardware:

e "Bus Support" - PCI

e "Bus Support" - "Message Signaled Interrupts..."

o "Bus Support" = "PCI host controller drivers" - "Freescale i.MX6 PCle controller"
This corresponds to the following configuration flags:

CONFIG PCI=y

CONFIG PCI MSI=y
CONFIG PCI_ IMX6=y

423 Required tools
The root file system must have the following tool(s) installed:

e wpa supplicant
e wpa cli

Both tools are added with packagegroup-base-extended and itin turn is included in all
images in Yocto except for core-image-minimal.

4.3 Module: Intel 7260 (PCle)

Product | Interface Comment
Intel® Dual Band Wireless AC | PCle It is commonly used in laptops
7260 Plus Bluetooth and is available at a low price

Copyright 2016 © Embedded Artists AB RevA

https://en.wikipedia.org/wiki/Wireless_LAN
https://en.wikipedia.org/wiki/UHF
https://en.wikipedia.org/wiki/Super_high_frequency
http://www.intel.com/content/www/us/en/wireless-products/dual-band-wireless-ac-7260-bluetooth.html
http://www.intel.com/content/www/us/en/wireless-products/dual-band-wireless-ac-7260-bluetooth.html

Wireless Communication on iMX Developer’s Kits Page 10

s ()) l,‘
WA

.M&ﬂﬁﬂ‘
([T

4.3.1 Kernel configuration

Using the Intel 7260 requires some configuration options in the Linux kernel compared to the default

for IMX. These have been enabled for the COM boards already and are only listed as reference below.
o "Device Drivers" ->"Generic Driver Options" ->"Userspace firmware loading support"

o "Device Drivers" - "Network Device Support" = "Wireless LAN" = "Intel Wireless WiFi
Next Gen AGN -"

o "Device Drivers" - "Network Device Support" = "Wireless LAN" = "Intel Wireless WiFi
MVM Firmware Support"

This corresponds to the following configuration flags:

CONFIG_FW _LOADER=y
CONFIG IWLWIFI=m
CONFIG_IWLDVM=m
CONFIG_IWLMVM=m
CONFIG_IWLWIFI_ OPMODE MODULAR=y

432 Firmware

The Intel 7260 card needs a firmware file to work. The following prints will appear when booting if the
firmware is missing:

Intel (R) Wireless WiFi driver for Linux, in-tree:

Copyright (c) 2003- 2014 Intel Corporation

PCI: enabling device 0000:01:00.0 (0140 -> 0142)

iwlwifi 0000:01:00.0: Direct firmware load failed with error -2
iwlwifi 0000:01:00. Falling back to user helper

iwlwifi 0000:01:00. Direct firmware load failed with error -2
iwlwifi 0000:01:00. Falling back to user helper

iwlwifi 0000:01:00. Direct firmware load failed with error -2
iwlwifi 0000:01:00. Falling back to user helper

iwlwifi 0000:01:00. request for firmware file 'iwlwifi-7260-
7.ucode' failed.

iwlwifi 0000:01:00.0: no suitable firmware found!

O O O O o o

The firmware can be downloaded from Intel. Make sure to pick the correct version for the Linux kernel.
At the time this document was written that was iwlwifi-7260-ucode-25.30.13.0.tgz.
Transfer the file to the target (for example with a USB memory stick) and then unpack it:

tar —-xf iwlwifi-7260-ucode-25.30.13.0.tgz
cd iwlwifi-7260-ucode-25.30.13.0
cp 1iwlwifi-7260-13.ucode /lib/firmware/

Copyright 2016 © Embedded Artists AB RevA

https://wireless.wiki.kernel.org/en/users/Drivers/iwlwifi

Wireless Communication on iMX Developer’s Kits Page 11

Reboot to load the new drivers. The error message above will be replaced with:

Intel (R) Wireless WiFi driver for Linux, in-tree:

Copyright (c) 2003- 2014 Intel Corporation

PCI: enabling device 0000:01:00.0 (0140 -> 0142)

iwlwifi 0000:01:00.0: loaded firmware version 25.30.13.0 op mode
iwlmvm

iwlwifi 0000:01:00.0: Detected Intel (R) Dual Band Wireless AC
7260, REV=0x144

Go to section 4.5 or section 4.6 to continue with creating a connection to a wireless network.

44 Module: D-Link DWA-121 (USB)

Product Interface Comment

Wireless N 150 Pico USB USB This module is using a chipset

Adapter from Realtek called
RTL8188CUS.

The DWA-121 module from D-Link is using a RTL8188CUS/RTL8892CUS compatible chipset from
Realtek. It should be possible to use the instructions in this section also for other modules using the
same chipset.

441 Kernel configuration

Using the Realtek RTL8188CUS/RTL8192CUS chipset requires some configuration options in the
Linux kernel compared to the default for iMX. These have been enabled for the COM boards already
and are only listed as reference below.

o “Device Drivers” >"Network device support” > "Wireless LAN” - “Realtek rtlwifi family of
devices”

o “Device Drivers” ->"Network device support” > "Wireless LAN” - “Realtek rtiwifi family of
devices” 2> “Realtek RTL8192CU/RTL8188CU USB Wireless Network Adapter”

This corresponds to the following configuration flags:

CONFIG RTL CARDS=y
CONFIG RTLWIFI=y

CONFIG RTLWIFI USB=y
CONFIG RTL8192C COMMON=y
CONFIG_RTL8192CU=y

442 Firmware

The DWA-121 module needs a firmware file to work. If the file is missing the output below can be seen
in the console when inserting a module into the USB host port.

Copyright 2016 © Embedded Artists AB RevA

http://www.dlink.com/uk/en/home-solutions/connect/adapters/dwa-121-wireless-n-150-pico-usb-adapter
http://www.dlink.com/uk/en/home-solutions/connect/adapters/dwa-121-wireless-n-150-pico-usb-adapter

Wireless Communication on iMX Developer’s Kits Page 12

rtl18192cu: Chip version 0x10

rtl18192cu: MAC address: 54:b8:0a:01:23:87

rtl18192cu: Board Type O

rtl usb: rx max size 15360, rx urb num 8, in ep 1

rtl18192cu: Loading firmware rtlwifi/rtl8192cufw TMSC.bin

usb 1-1.3: Direct firmware load failed with error -2

usb 1-1.3: Falling back to user helper

usb 1-1.3: Direct firmware load failed with error -2

usb 1-1.3: Falling back to user helper

rtlwifi: Loading alternative firmware rtlwifi/rtl18192cufw.bin
rtlwifi: Firmware rtlwifi/rtl18192cufw TMSC.bin not available

The firmware can be downloaded from several sources on the Internet, for example:
http://qit.kernel.org/cqit/linux/kernel/qit/firmware/linux-firmware.qit/tree/rtlwifi

The firmware file should be put in the directory /1ib/firmware/rt1lwifi. Below are
instructions that show how the file is downloaded using wget (meaning the target must have an
Internet connection).

cd /lib/firmware

mkdir rtlwifi

cd rtlwifi

wget http://git.kernel.org/cgit/linux/kernel/git/firmware/linux-
firmware.git/plain/rtlwifi/rt18192cufw TMSC.bin

When the firmware file has been downloaded you can insert the D-Link USB module into the USB host
port and you should see output like below in the console.

rt18192cu: Chip version 0x10

rt18192cu: MAC address: 54:b8:0a:01:23:87

rtl8192cu: Board Type O

rtl usb: rx max size 15360, rx urb num 8, in ep 1
rtl18192cu: Loading firmware rtlwifi/rtl8192cufw TMSC.bin
rtlwifi: wireless switch is on

Go to section 4.5 or section 4.6 to continue with creating a connection to a wireless network.

4.5 Connect manually from console
Bring up the wlan0 interface and then start the wpa supplicant daemon in the background:

ip link set wlanO up
wpa supplicant -B -i wlanO -c /etc/wpa supplicant.conf

Sometimes the ip 1ink command will respond with an “Operation not possible due to RF-kill” error
message. To fix run the commands below.

rfkill list
0: hciO: Bluetooth
Soft blocked: yes
Hard blocked: no
1: phy0O: wlan
Soft blocked: yes < Blocked
Hard blocked: no

rfkill unblock wifi

Copyright 2016 © Embedded Artists AB RevA

http://git.kernel.org/cgit/linux/kernel/git/firmware/linux-firmware.git/tree/rtlwifi

Wireless Communication on iMX Developer’s Kits

rfkill list
O: hciO: Bluetooth
Soft blocked: yes
Hard blocked: no
1: phy0O: wlan

Hard blocked: no

Soft blocked: no < No longer blocked

It is now time to run the interactive wpa c11i tool to scan for, select and then connect to a network.

wpa cli

Scan for networks (press ENTER after the last line below to get back to the prompt):

> scan

OK
<3>CTRL-EVENT-SCAN-STARTED
<3>CTRL-EVENT-SCAN-RESULTS

To list found networks:

> scan_result
bssid / frequency / signal level / flags / ssid

00:fa:00:00:49:ff 5500 -86
00:c7:00:00:02:80 2462 -86
00:fa:00:00:49:f1 2412 -76
00:c7:00:00:3:90 2412 -93

WPA2-EAP-CCMP] [ESS]
WPA2-EAP-CCMP] [ESS]
ESS]

[
[
[
[WPA2-EAP-CCMP] [ESS]

00:1e:00:00:ca:89 2412 -76 [WPA2-PSK-CCMP+TKIP][ESS] EA Guest

BOB

ALICE

Company Guest
Company Inc

The list shows that the “EA Guest” network uses pre-shared keys (PSK) as authentication. Itis a
relatively low security alternative but it is simple to use. The following example will connect to that
network using the password “welcome”. For examples using other authentication methods see

https://wiki.netbsd.org/tutorials/how to use wpa_supplicant/.

To connect to the “EA Guest” network:

> add network

0

> set network 0 ssid "EA Guest"
OK

> set network 0 psk "welcome"
OK

> enable network 0

<3>CTRL-EVENT-CONNECTED. . .
> status
bssid=00:1e:00:00:ca:89
ssid=EA Guest
1d=0
mode=station
pairwise cipher=CCMP
group_ cipher=TKIP
key mgmt=WPA2-PSK
wpa_ state=COMPLETED
address=d8:00:93:00:1e:00

Copyright 2016 © Embedded Artists AB

RevA

https://wiki.netbsd.org/tutorials/how_to_use_wpa_supplicant/

Wireless Communication on iMX Developer’s Kits

§> save config & Very important to save before quitting
: OK
> quit

Note: If there is more than one network (added before or added automatically) the add network
call will return another number, for example 1. Use that inthe set network and enable
network calls. If there is another enabled network then the enable network call won't make
any difference. Use the select network X command to select the wanted network and disable
all the others. An alternative is to use the remove network X command on each of the existing
networks before starting.

Some useful commands:

> list networks
network id / ssid / bssid / flags
0 EA Guest any [CURRENT]

> remove network 1
OK

> select network 0
OK

Now that there is a connection to a network all that is left to do is to get an IP address:

udhcpc -i wlanO

udhcpc (v1.22.1) started

Sending discover...

Sending select for 192.168.0.6...

Lease of 192.168.0.6 obtained, lease time 3600
/etc/udhcpc.d/50default: Adding DNS 192.168.0.1
/etc/udhcpc.d/50default: Adding DNS 8.8.8.8

The changes will last until next reboot at which time it must all be repeated.

4.6 Connect automatically during boot

It is possible to configure the system to automatically connect to a network when booting instead of
having to connect manually each time. To do this update the /etc/wpa supplicant.conf
file to look like this:

ctrl interface=/var/run/wpa supplicant
ctrl interface group=0
update config=1

network={
key mgmt=NONE
disabled=1

}

network={
ssid="Ea Guest"
psk="welcome"

The first network is disabled to prevent connections to open networks. The second network is the one
found with wpa c11i in the manual configuration steps above.

Copyright 2016 © Embedded Artists AB RevA

Wireless Communication on iMX Developer’s Kits

Update /etc/network/interfaces to contain the following (it will have more lines but the
lines below must appear somewhere in the file):

Wireless interfaces
auto wlanO
iface wlan0 inet dhcp
wireless mode managed
wireless essid any
wpa-driver wext
wpa-conf /etc/wpa supplicant.conf

Copyright 2016 © Embedded Artists AB RevA

Wireless Communication on iMX Developer’s Kits

5 Bluetooth

5.1 Introduction

Bluetooth is a wireless technology mainly using the 2.4 to 2.485 gigahertz ISM radio bands for short
range communication. It is commonly supported by mobile / handheld devices due to its low-power
consumption.

5.2 General requirements

521 Bluetooth support in the kernel

There are many Bluetooth related configurations for the kernel but all the required ones have already
been set in the default configuration for iMX. The Linux kernel provided by Embedded Artists is
configured with Bluetooth support.

522 Required tools
The root file system must have the following tool(s) installed:

e Dbluetoothctl
e Dbluetoothd

Both tools are added with packagegroup-base-extended and itin turn is included in all
images in Yocto except for core-image-minimal.

5.3 Module: Intel 7260 (PCle)

Product | Interface Comment
Intel® Dual Band Wireless PCle It is commonly used in laptops
AC 7260 Plus Bluetooth and is available at a low price

Using the Intel 7260 requires some configuration options in the Linux kernel compared to the default
for IMX. These have been enabled for the COM boards already.

e “Device Drivers” ->"Generic Driver Options” -"Userspace firmware loading support”

This corresponds to the following configuration flags:

CONFIG_FW _LOADER=y

5.3.1 Firmware

The Intel 7260 card needs a firmware file to work. The following output will appear when booting if the
firmware is missing:

Bluetooth: hci0O failed to open Intel firmware file: intel/ibt-hw-
37.7.10-fw-1.80.1.2d.d.bseq(-2)

bluetooth hciO: Direct firmware load failed with error -2
bluetooth hcilO: Falling back to user helper

Bluetooth: hciO failed to open default Intel fw file: intel/ibt-
hw-37.7.bseq

The firmware can be downloaded from Intel. At the time this document was written there was no direct
link to the firmware from the Intel page. The file is available in the linux-firmware git and can be directly
downloaded to the target with the following commands:

Copyright 2016 © Embedded Artists AB RevA

http://www.intel.com/content/www/us/en/wireless-products/dual-band-wireless-ac-7260-bluetooth.html
http://www.intel.com/content/www/us/en/wireless-products/dual-band-wireless-ac-7260-bluetooth.html
https://wireless.wiki.kernel.org/en/users/Drivers/iwlwifi

Wireless Communication on iMX Developer’s Kits Page 17

mkdir -p /lib/firmware/intel

cd /lib/firmware/intel

wget http://git.kernel.org/cgit/linux/kernel/git/firmware/linux-
firmware.git/plain/intel/ibt-hw-37.7.10-fw-1.80.1.2d.d.bseq

Reboot to load the new drivers. The error message above will be replaced with:

Bluetooth: hciO: Intel Bluetooth firmware file: intel/ibt-hw-
37.7.10-fw-1.80.1.2d.d.bseq

5.4 Access / configure Bluetooth devices
Check if the device is up:

hciconfig -a hciO

hciO: Type: USB
BD Address: 00:00:00:00:00:00 ACL MTU: 0:0 SCO MTU: 0:0
DOWN

RX bytes:0 acl:0 sco:0 events:0 errors:0
TX bytes:0 acl:0 sco:0 commands:0 errors:

If it is down then bring it up with:

g# hciconfig hciO up

Then test the status again:

hciconfig -a hci0
hciO: Type: BR/EDR Bus: USB
BD Address: D8:FC:93:E4:1E:A6 ACL MTU: 1021:5 SCO MTU:
96:6
UP RUNNING PSCAN
RX bytes:1729 acl:0 sco:0 events:157 errors:0
TX bytes:21346 acl:0 sco:0 commands:156 errors:0
Features: Oxff Oxfe 0x0f Oxfe Oxdb Oxff 0x7b 0x87
Packet type: DM1 DM3 DM5 DH1 DH3 DHS5 HV1 HV2 HV3
Link policy: RSWITCH HOLD SNIFF
Link mode: SLAVE ACCEPT
Name: 'BlueZ 5.25'
Class: 0x200000
Service Classes: Audio
Device Class: Miscellaneous,
HCI Version: 4.0 (0x6) Revision: 0xe0O0
LMP Version: 4.0 (0x6) Subversion: 0xe00
Manufacturer: Intel Corp. (2)

Start the Bluetooth daemon:

é# /usr/lib/bluez5/bluetooth/bluetoothd &

Use the interactive bluetoothct1 command line tool to search for devices, pair with a device (the
Galaxy Nexus phone), connect to it and then find some information about it:

é# bluetoothctl
[bluetooth] power on

Copyright 2016 © Embedded Artists AB RevA

Wireless Communication on iMX Developer’s Kits

[bluetooth] agent on
[bluetooth] scan on
Discovery started
[CHG] Controller D8:FC:93:E4:1E:A6 Discovering: yes
[NEW] Device B0:D0:00:38:00:C6 Galaxy Nexus
[NEW] Device 40:2B:Al1:5F:7F:46 MW600
[bluetooth] pair B0:D0:00:38:00:C6
Attempting to pair with B0:D0:00:38:00:C6
[CHG] Device B0:D0:00:38:00:C6 Connected: yes
[CHG] Device B0:D0:00:38:00:C6 Modalias: bluetooth:v000Fpl200d1436
[CHG] Device B0:D0:00:38:00:C6 UUIDs:
00001105-0000-1000-8000-00805f9%034fb
0000110a-0000-1000-8000-00805f9034fb
0000110c-0000-1000-8000-00805£f9p34fb
00001112-0000-1000-8000-00805£f9p34fb
00001115-0000-1000-8000-00805f9034fb
00001116-0000-1000-8000-00805f9034fb
0000111£f-0000-1000-8000-00805f9034fb
0000112£f-0000-1000-8000-00805£f9b34fb
00001200-0000-1000-8000-00805£f9b34fb
[CHG] Device B0:D0:00:38:00:C6 Paired: yes
Pairing successful
[bluetooth] scan off
[bluetooth] devices
Device B0:D0:00:38:00:C6 Galaxy Nexus
[bluetooth]# connect B0O:D0:9C:38:84:C6
Attempting to connect to B0:D0:9C:38:84:C6
[CHG] Device B0:D0:9C:38:84:C6 Connected: yes
Connection successful
[bluetooth]l# info B0:D0:00:38:00:C6
Device B0:D0:00:38:00:C6
Name: Galaxy Nexus
Alias: Galaxy Nexus
Class: 0x5a020c
Icon: phone
Paired: yes
Trusted: yes
Blocked: no
Connected: yes
LegacyPairing: no

UUID: OBEX Object Push 00001105-0000-1000-8000-00805£9b34 fb

()
UUID: Audio Source (0000110a-0000-1000-8000-00805£9b34fb)
UUID: A/V Remote Control Target (0000110c-0000-1000-8000-00805£9b34fb)
UUID: Headset AG (00001112-0000-1000-8000-00805£9b34fb)
UUID: PANU (00001115-0000-1000-8000-00805£9b34fb)
UUID: NAP (00001116-0000-1000-8000-00805£9b34fb)
UUID: Handsfree Audio Gateway (0000111£f-0000-1000-8000-00805£9b34fb)
UUID: Phonebook Access Server (0000112f-0000-1000-8000-00805f9034fb)
UUID: PnP Information (00001200-0000-1000-8000-00805£9b34fb)
Modalias: bluetooth:v000Fpl1200d1436

[bluetooth] quit

Using the sdptool command it is possible to find even more information (only showing first part
here):

é# sdptool browse B0:D0:00:38:00:C6
‘ Browsing B0:D0:00:38:00:C6
IService Name: Headset Gateway

. Service RecHandle: 0x10000
éService Class ID List:

| "Headset Audio Gateway" (0x1112)

Copyright 2016 © Embedded Artists AB RevA

Wireless Communication on iMX Developer’s Kits

"Generic Audio" (0x1203)
Protocol Descriptor List:
"L2CAP" (0x0100)
"RFCOMM" (0x0003)
Channel: 2
Profile Descriptor List:
"Headset" (0x1108)
Version: 0x0102

5.5 Additional links
https://wiki.archlinux.org/index.php/Bluetooth headset

https://wiki.archlinux.org/index.php/Bluetooth

Copyright 2016 © Embedded Artists AB

RevA

https://wiki.archlinux.org/index.php/Bluetooth_headset
https://wiki.archlinux.org/index.php/Bluetooth

Wireless Communication on iMX Developer’s Kits

6 XBee (UART)

6.1 Introduction

XBee is a registered trademark of Digi International and it is really a brand name of a form factor more
than a wireless technology. A separate chapter is dedicated to XBee since there is an XBee
compatible connector on the COM Carrier board and the use of these modules requires special
instructions. Itis the UART interface that is used to communicate with XBee modules.

Several different wireless technologies may be supported by modules using the XBee form factor.
6.2 Module: XBee 802.15.4
Product Interface Comment

XBee 802.15.4 module from Digi UART
International

This description is for the XBee 802.15.4 module from Digi International. However the instructions and
commands may be applicable to other modules as well.

The XBee module is connected to different pins depending on COM Board as shown in the table
below. Note that the number in parentheses is the number to use when using
/sys/class/gpio/export as described further down.

SoloX Quad UltraLite
UART [dev/ttymxc1 /dev/ttymxc4 /dev/ttymxc1
RF_CD 1_06 (6) 6_02 (162) 1.19 (19)
RF_DTR 1.07 (7) 6_03 (163) 1.18 (18)
RF_ON N/A 323 (87) 416 (112)
RF_RST 1_16 (16) 2_19 (51) 423 (119)

Note that the RF_RST signal is available on Carrier boards rev B and later.

The XBee module has two main operating modes: Application Transparent (AT) and Application
Programming Interface (API). AT is the default mode and in this mode the XBee module works as a
point-to-multipoint serial port, meaning that everything sent from one module is received by all other
modules on the same "network". The network is identified with a PAN ID and by default that is 3332.
Only modules with the same PAN ID (and within range) will receive data.

Copyright 2016 © Embedded Artists AB RevA

Wireless Communication on iMX Developer’s Kits Page 21

The module is easily configured either directly with a terminal program (connected at 9600 baud, 8bits,
1 stop bit and no parity), or using the XTCU software provided by Digi International.

All configuration options are described in the product documentation
(http://ftp1.digi.com/support/documentation/90000982_S.pdf), but here are some of the more important

ones:
AT Command Description Default Value

ATNI Node Identifier

ATID PAN ID 3332

ATAP API Enable Command 0 - API Disabled
ATD6 D106 Configuration 0 - Disabled

ATD7 DIO7 Configuration 1 - CTS Flow Control
ATDH Destination Address High 0

ATDL Destination Address Low 0

ATSH Serial Number High 13A200

ATSL Serial Number Low Module specific
ATMY 16-bit Source Address 0

ATBD Interface Data Rate 3 -9600 baud

Apart from configuration of the module there is one very important thing that must be done before it
can be used and that is resetting. The RF_RST input must be drawn low, held low for at least 200ns,
and then drawn high. If this is not done the module might be unresponsive.

To handle the reset sequence in Linux:

echo 163 > /sys/class/gpio/export

echo out > /sys/class/gpio/gpiol63/direction
echo 0 > /sys/class/gpio/gpiol63/value

echo 1 > /sys/class/gpio/gpiol63/value

r r Uy Ux

The number 163 is derived from the formula num = (port - 1)*32 + pin. So GPI06_03 will give num = (6
-1)*32+ 3= 163.

An easy way to use the serial port:

S stty -F /dev/ttymxc4 9600 raw -echo
S cat /dev/ttymxcd &
$ echo bob > /dev/ttymxcd

All other modules in the network with the same PAN ID (default 3332) will receive the string "bob".

Another way is to use a terminal program like mi crocom:

S microcom -s 9600 /dev/ttymxcéd

Copyright 2016 © Embedded Artists AB RevA

http://ftp1.digi.com/support/documentation/90000982_S.pdf

Wireless Communication on iMX Developer’s Kits Page 22

To change the PAN ID in mi crocom first enter command mode by entering +++ and wait for an OK
to appear. In command mode it is possible to enter AT commands, for example, ATID to view or set
configuration options. The options are set in RAM and will be valid until next time the module is reset.

To see the current value of an option:

ATID
alice

ATIDBob
OK

ATID
Bob

To change network ID from the default one to 'EAEA":

. ATIDEAEA
. OK

Command mode can be exited either by being idle for a couple of seconds (how many is configurable)
or by entering the ATCN command.

Changing the PAN ID from the default will not prevent anyone from joining the network. An alternative
is to pair the module with another one so that traffic only flows between the paired modules.

Pairing is done by setting module A's destination address (DH + DL) to B's MAC address and the other
way around so if the modules look like this:

| SH SL
101010 2020202020
B 303030 4040404040

Then the destinations should be configured like this:

| DH DL
A 303030 4040404040
B 101010 2020202020

The commands to do this on module A are;

ATDH303030
OK

ATDL4040404040
OK

Copyright 2016 © Embedded Artists AB RevA

Wireless Communication on iMX Developer’s Kits Page 23

After making the changes only A and B communicates. To restore the defaults set the destinations
back to 0 (both DH and DL) on both A and B.

By default, the Xbee modules are operating in Transparent Mode. In this mode the modules act as a
point-to-multipoint serial line replacement. That which is sent into one module is transmitted and
received on all other modules.

The APl mode was mentioned in the beginning of this section, but there are currently no examples for
it. The reason for this is that the APl mode is a bit more complex and it requires frame handling and
multiple processes.

6.2.1 Flow Control

The examples above use no flow control which will be sufficient for low data rates but when the traffic
increases flow control will prevent data loss.

Note that the RTS/CTS flow control mode is not working on Carrier boards rev A. The issue has
been fixed on rev B boards.

To enable RTS/CTS flow control and send the message “bob” to all listening devices:

$ stty -F /dev/ttymxcd4 9600 raw —echo crtscts
$ cat /dev/ttymxcd &
$ echo bob > /dev/ttymxcd

If RTS/CTS is unsupported then the stty command will respond with an error like this:

$ stty -F /dev/ttymxc4 9600 raw —-echo crtscts
stty: /dev/ttymxc4: cannot perform all requested operations

To check if RTS/CTS has been enabled or not;

$ stty -a -F /dev/ttymxc4
speed 9600 baud;stty: /dev/ttymxci

—-parenb -parodd cs8 hupcl -cstopb cread clocal crtscts
—-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr

If there is a minus sign before the crtscts string then RTS/CTS is disabled.

RTSICTS on the iMX6 Ultra Lite

On the UltraLite board a separate dtb file must be loaded to utilize the RTS/CTS flow control. The
reason is that the RTS/CTS signals share pinning with the CAN2 interface so only one can be selected
at a time. The default dtb file enables CAN2 and disables UART1 RTS/CTS.

Run the following commands in the u-boot to enable RTS/CTS:

=> setenv fdt file imx6ulea-com-kit-rf.dtb
=> saveenv

Copyright 2016 © Embedded Artists AB RevA

Wireless Communication on iMX Developer’s Kits Page 24

To disable RTS/CTS and restore the CAN2 interface:

§=> setenv fdt file imx6ulea-com-kit.dtb
. => saveenv

6.2.2 Software Alternative — GitHub

The official code repository from Digi International is their Ansi C library on github:
htps://github.com/digidotcom/xbee_ansic_library. It is possible to compile it using the toolchain
(INSERT LINK TO User's Manual) but out of all examples only the xbee_terminal application worked
and it uses the AT commands.

Note that the module still needs to be reset before executing the application.

This is roughly the commands needed to compile the examples in Ubuntu:

source /opt/poky/l.7/environment-setup-cortexa9hf-vfp-neon-poky-
linux-gnueabi
git clone https://github.com/digidotcom/xbee ansic library.git
cd xbee ansic library/samples/posix
pico Makefile
replace the “COMPILE = gcc ...” with “COMPILE = $(CC) ...”
make all

6.2.3 Software Alternative — Python XBee 2.2.3

There is a python library (https://pypi.python.ora/pypi/XBee) publicly available but it has some specific
requirements to be installed and that is not available on the imx6 boards at this time.

6.2.4 Software Alternative — Python

It is possible to write your own python script to reset and control the XBee module. To do this the target
file system must have at least the python-pyserial module installed. This procedure is described in the
Working with Yocto document (INSERT LINK). Add the package like this:

IMAGE INSTALL append = " \
python-pyserial \"

To enable gpio 6_03 and do a reset of the XBee module:

#!/usr/bin/python
import serial

import struct

from time import sleep
import sys

v = ['l', '6', '3']

with open('/sys/class/gpio/export', 'w') as f:
f.write(struct.pack('c'*len(v), *v))

V: ['O', 'u', 't']

with open('/sys/class/gpio/gpiol63/direction', 'w') as f:
f.write(struct.pack('c'*len(v), *v))

Copyright 2016 © Embedded Artists AB RevA

https://github.com/digidotcom/xbee_ansic_library
https://pypi.python.org/pypi/XBee

Wireless Communication on iMX Developer’s Kits

with open('/sys/class/gpio/gpiolé63/value', 'r+') as f:
f.write (struct.pack('c', '0"))

sleep(0.001)

with open('/sys/class/gpio/gpiol63/value', 'r+') as f:
f.write(struct.pack('c', '1"))

sleep (0.5)

To enter command mode and set node identifier:

#!/usr/bin/python
import serial

import struct

from time import sleep
import sys

ser = serial.Serial (port=comport, baudrate=9600, bytesize=8,
parity='N"', stopbits=1l)

ser.write ('+++")
resp = self.ser.readline ()

if resp.strip() == 'OK':
self.ser.write ("ATNIBob\r"')
resp = self.ser.readline()
if resp.strip() == 'OK':

print "Successfully set node id to 'Bob'"

Copyright 2016 © Embedded Artists AB RevA

Wireless Communication on iMX Developer’s Kits

7 Cellular networks

7.1 Introduction

Using cellular technology on embedded systems is getting more and more popular mostly because of
its good coverage and high capacity.

7.2 Module: U-Blox TOBY-L210
Product Interface Comment

U-Blox TOBY-L210 USB LTE/HSPA+/GSM module for
Europe/Asia

The module has mini PCle
form factor but only the USB
pins are in use.

Before starting:
o Make sure that you have a suitable external antenna for the network that will be used

o Make sure that the SIM card is valid, has no PIN code and has not expired (i.e. no limit on
data usage and/or SMS)

Using the TOBY-L210 requires some configuration options in the Linux kernel compared to the default
for iMX. These have been enabled for the COM boards already.

e Device Drivers >USB support = Support for Host-side USB - USB Modem (CDC ACM)
support

o Device Drivers > Network Device Support = USB Network Adapters = Multi-purpose USB
Networking Framework

o Device Drivers > Network Device Support > USB Network Adapters - CDC Ethernet
support

o Device Drivers = Network Device Support > USB Network Adapters = Host for RNDIS and
ActiveSync devices

This corresponds to the following configuration flags:

CONFIG USB_ACM=m
CONFIG_USB_USBNET=m

CONFIG USB_NET CDCETHER=m
CONFIG_USB_NET RNDIS HOST=m

The module can be found with the 1 susb command line tool:

é# lsusb
' Bus 001 Device 004: ID 1546:1146 U-Blox AG

Copyright 2016 © Embedded Artists AB RevA

Wireless Communication on iMX Developer’s Kits Page 27

Some information about the modem is printed during boot. Use the dme sg tool to find it:

dmesg | grep acm

cdc_acm 1-1.1:1.2: This device cannot do calls on its own. It is
not a modem.

cdc_acm 1-1.1:1.2: ttyACMO: USB ACM device

usbcore: registered new interface driver cdc acm

cdc_acm: USB Abstract Control Model driver for USB modems and ISDN
adapters

7.21 AT Commands

The module can be directly accessed with a terminal program (minicom is used as it is available in
the default Linux build for all COM boards).

microcom -s 115200 /dev/ttyACMO
AT
OK

AT+CMEE=2
OK

AT+CPIN?
+CPIN: READY
OK

All AT commands are described in the document AT Command Examples for u-blox cellular modules,
found in the resource list for the module: https://www.u-blox.com/en/product-resources/2451.

As an example, this is what is needed to send an SMS to phone number 012-123456:

AT+CMGF=1

OK

AT+CMGS="012123456" <& Press enter after phone number

> Hello from 1iMX6 €& Press Ctrl-Z to end message and send it
+CMGS: 43

Exit mi crocom with Ctrl-X

722 Network

The TOBY-L210 will be automatically detected during boot if the Linux kernel has RNDIS support (see
above). To check the boot log:

dmesg | grep rndis

rndis _host 1-1.1:1.0 usb0: register 'rndis host' at usb-ci hdrc.1l-
1.1, RNDIS device, b2:f6:11:7b:09:17

usbcore: registered new interface driver rndis_ host

Make sure that there is an usb0 interface. It will not be active yet:

é# ifconfig -a
. usb0 Link encap:Ethernet HWaddr 7E:61:55:F8:5E:35
5 BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0

Copyright 2016 © Embedded Artists AB RevA

https://www.u-blox.com/en/product-resources/2451

Wireless Communication on iMX Developer’s Kits

] TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
! collisions:0 txgqueuelen:1000 !
5 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Check if the module is in router or bridged mode:

microcom -s 115200 /dev/ttyACMO

AT+UBMCONE'?
+UBMCONF: 1 €< 1 means router mode, 2 means bridged mode
OK

If the module is in bridged mode, use the instructions in the Networking Modes AppNote to switch to
router mode.

Bring up the interface with the following command:

udhcpc -i usbO

udhcpc (v1.22.1) started

Sending discover...

Sending select for 192.168.1.100...

Lease of 192.168.1.100 obtained, lease time 43200
/etc/udhcpc.d/50default: Adding DNS 192.168.1.1

The interface is now fully operational.

route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
default 192.168.1.1 0.0.0.0 UG 0 0 0 usbO
192.168.1.0 * 255.255.255.0 U 0 0 0 usb0
ifconfig

usb0 Link encap:Ethernet HWaddr 0E:27:00:00:00:C6

inet addr:192.168.1.100 Bcast:192.168.1.255
Mask:255.255.255.0

inet6 addr: fe80::c967:bff:fa6a:4ba6/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:12 errors:0 dropped:0 overruns:0 frame:0
TX packets:26 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:1096 (1.0 KiB) TX bytes:6742 (6.5 KiB)

ping —I usb0 8.8.8.8

PING 8.8.8.8 (8.8.): 56 data bytes

64 bytes from 8.8. : seg=0 ttl=49 time=72.994 ms
64 bytes from 8.8. : seg=1l ttl=49 time=80.355 ms

8
8
8
64 bytes from 8.8.8 seg=2 ttl=49 time=84.304 ms

.8
.8
.8
.8

However, the connection will be lost when rebooting. To make the interface available after a reboot,
edit /etc/network/interfaces and add the following lines:

auto usbO
iface usb0 inet dhcp

Copyright 2016 © Embedded Artists AB RevA

https://www.u-blox.com/sites/default/files/TOBY-L2-NetworkingModes_AppNote_%28UBX-14000479%29.pdf

	1 Document Revision History
	2 Introduction
	2.1 Conventions

	3 Communication interfaces
	3.1 PCIe
	3.2 SDIO
	3.3 XBee / UART
	3.4 USB

	4 Wi-Fi
	4.1 Introduction
	4.2 General requirements
	4.2.1 Wireless support in the kernel
	4.2.2 PCIe support in the kernel
	4.2.3 Required tools

	4.3 Module: Intel 7260 (PCIe)
	4.3.1 Kernel configuration
	4.3.2 Firmware

	4.4 Module: D-Link DWA-121 (USB)
	4.4.1 Kernel configuration
	4.4.2 Firmware

	4.5 Connect manually from console
	4.6 Connect automatically during boot

	5 Bluetooth
	5.1 Introduction
	5.2 General requirements
	5.2.1 Bluetooth support in the kernel
	5.2.2 Required tools

	5.3 Module: Intel 7260 (PCIe)
	5.3.1 Firmware

	5.4 Access / configure Bluetooth devices
	5.5 Additional links

	6 XBee (UART)
	6.1 Introduction
	6.2 Module: XBee 802.15.4
	6.2.1 Flow Control
	6.2.2 Software Alternative – GitHub
	6.2.3 Software Alternative – Python XBee 2.2.3
	6.2.4 Software Alternative – Python

	7 Cellular networks
	7.1 Introduction
	7.2 Module: U-Blox TOBY-L210
	7.2.1 AT Commands
	7.2.2 Network

