

Micro USB2.0 Receptacle 5Pos Water Proof

108-61243 23 Feb '15 Rev.A

- 1. Scope :
- 1.1 Contents

This specification covers the requirements for product performance, test methods and quality

assurance provisions of Waterproof Micro USB I/O Socket.

Applicable product description and part numbers are as shown in Appendix 1.

2. Applicable Documents:

The following documents form a part of this specification to the extent specified herein. In the event of conflict between the requirements of this specification and the product drawing, the product drawing shall take precedence. In the event of conflict between the requirements of this specification and the referenced documents, this specification shall take precedence.

- 2.1 AMP Specifications :
- A. 109-5000 : Test Specification, General Requirements for Test Methods
- B. 501-61077 : Test Report
- 2.2 Commercial Standards and Specifications
- A. ANSI/ EIA-364 Test Method for Electronic and Electric Parts
- B. Universal Serial Bus 2.0 Specification

Tyco Electronics AMP Korea Ltd.

This document is managed by our company, and it is changed if necessary. Please inquire to us about the latest revision. ©Copyright 2007 by Tyco Electronics AMP Korea. All Right Reserved.

- 3. Requirements :
- 3.1 Design and Construction :

Product shall be of the design, construction and physical dimensions specified on the applicable product drawing.

- 3.2 Materials :
- A. Contact (Plug & Receptacle)

Material : Copper alloy

B. Housing (Plug & Receptacle)

Material : Thermo Plastic

C. Shell, Lock lever, Hold plate (Plug & Receptacle)

Material : Stainless steel.

- 3.3 Ratings :
- A. Voltage Rating : 30V AC/DC Max.
- B. Current Rating ① Signal Only : 1 A/Pin Max.

2 Power Apply : 1.8 A/Pin Max(Pin No. 1) / 0.5 A/Pin Max(Pin No. 2~5)

C. Operating Environment

Operating Temperature Rating : - 30°C to +85°C (Including temperature rising)

Operating Relative Humidity : 95% Max. (non-condensing)

- * High Limit temperature includes Raised Temperature by Operation.
- D. Storage Environment

Storage temperature : - 30°C to +85°C (with Packing)

Storage Relitive Humidity : 15% to 70% RH

3.4 Performance Requirements and Test Descriptions :

The product shall be designed to meet the electrical, mechanical and environmental performance requirements specified in Fig. 1. All tests shall be performed in the Room Temperature (15~35°C), Relative Humidity (25~85%), Air Pressure(86~106kPa), unless otherwise specified.

3.5 Test Requirements and Procedures Summary

Para.	Test Items	Requirements Procedures							
3.5.1	Examination of Product	No physical damage Visual inspection							
			No physical damage						
Electrical Requirements									
3.5.2	Contact Resistance	Initial, 50mΩ Max.	Mate connector with dry circuit(20mV						
	(Low Level)	After test, Δ R=±10m Ω Max.	lax. Max., 100mA Max.). 4-wire measuremen						
			is required. Resistance of termination						
			wires shall be deducted from the reading.						
			(FiG.4)						
3.5.3	Insulation Resistance	Initial, 1000M Ω Min.	Apply 500VDC with un-mating condition						
		Agter test, 100M Ω Min.	between adjacent contacts for 1 minute.						
			[IEC 60512-3-1]						
3.5.4	Dielectric withstanding	No voltage breakdown.	Apply 500VAC between all adjacent						
	Voltage		contacts in un-mating condition and						
			700VAC between Vbus pin &						
			reinforcement(GND) in mating condition						
			for 1 minute. [IEC 60512-4-1]						
3.5.5	Temperature Rise	After test, 30°C Max.	Contact series, Mate connector and						
			measure the temperature rise at the rated						
			current after 2hours.						
			[EIA-364-70A]						
		Mechanical Requirements							
3.5.6 Mating force		2~25N	Measure force to mate at a rate of						
			12.5mm per minute maximum.						
3.5.7	Un-mating force	8~20N .	Measure force to unmate at a rate of						
			12.5mm per minute maximum.						
3.5.8	Durability	No physical damage and shall	10,000 cycles.						
		meet requirements of	- Mechanically Operated : 500 cycle/hour						
		subsequent tests.	with lubricant at the lock lever mating area						
			- Manually Operated : 200 cycle/hour						
	Vabration	No physical damage.	Apply for 2 hours in each 3 mutually						
		No change to performance.	perpendicular axes(total 6 hours).						
3.5.9		No discontinuity greater than	Frequency=10-55-10Hz						
		1.0 microsecond.	(Sweep time :1 minute max.)						
			Amplitude=1.5mm, Current=100mA						
			[EIA-364-28F Condition I]						

		1	1							
		No physical damage.	Apply for 15 minutes in each 3 mutually							
	Random Vabration	No change to performance.	perpendicular axes(total 45 minutes).							
3.5.10		No discontinuity greater than	Frequency=50-2,000Hz							
		1.0 microsecond.	Power spectral density=0.02g2/Hz							
			Current=100mA							
 			[EIA-364-28F Condition V Test Letter A]							
Para.	Test Items	Requirements	Procedures							
	Shock	No physical damage.	Apply 3 successive shocks in each							
		No change to performance.	direction along the 3 mutually							
		No discontinuity greater than	perpendicular axes(total 18 shocks)							
3.5.11		1.0 microsecond.	Pulse shape=harf sine							
			Peak acceleration=490m/s2(50G)							
			Duration of pulse=11ms							
			[EIA-364-27B Condition I]							
	Reverse Mating Strength	50N Min.	Apply a force to the connector in reverse							
0 5 4 0			mating condition at a rate of 12.5mm per							
3.5.12			minute maximum until the breakdown							
			occurs or connector is inserted.							
;	Soldering Strength	80N Min.	Apply a force to the connector in each							
			parallel direction(X & Y) with PCB at a rate							
3.5.13			of 12.5mm per minute maximum until the							
			breakdown of connecotr or soldering parts							
			occurs. (Fig.5)							
	Compulsory Insertion	250N Min.	Apply a force to the mated connector at a							
3.5.14	Strength		rate of 12.5mm per minute maximum until							
			the breakdown occurs.							
	Swing wrenching	No physical damage and shall	Appy 1kgf, 10,000 cycles of swing							
2 5 1 5	durability with 1kgf	meet requirements of	wrenching force in each direction							
3.5.15	(Set condition test)	subsequent tests.	(horizontal & vertical) at a rate of 100mm							
			per minute maximum. (Fig.6)							
;	Swing wrenching	No physical damage and shall	Apply 10kgf, 10 cycles of swing wrenching							
2540	durability with 10kgf	meet requirements of	force in each direction(horizontal &							
3.5.16	(Set condition test)	subsequent tests.	vertical) at a rate of 100mm per minute							
			maximum. (Fig.7)							
Environmental Requirements										
3.5.17	Dry cold (steady state)	No physical damage and shall	-40°C±3°C for 96 hours							
		meet requirement of	Recovery period 2 hours at ambient							
		subsequent test.	atmosphere. [MIL-STD-202 Method 108]							
3.5.18	Dry heat (steady state)	No physical damage and shall	+85°C±2°C for 96 hours							
, I		meet requirement of	Recovery period 2 hours at ambient							
1		mootroquiomontoi								

Para.	Test Items	Requirements	Procedures						
3.5.19	Thermal Shock	No physical damage and shall	Ta=-40°C for 2 hours; then change of						
	(change of temperature)	meet requirement of	temp.=25°C , 5minute max.; then						
		subsequent test.	Tb=+85°C for 2 hours. After 20cycles,						
			cool to ambient for 2 hours.						
3.5.20	Damp heat (steady state)	120 hours at Temp. 85°C±2°C, R/H 85±							
		meet requirement of	5%; After test, cool to ambient temp. for 2						
		subsequent test.	hours.						
3.5.21	Salt spray	No physical damage and shall	48 hours spray, At temp. 35±2 °C						
		meet requirement of	R/H 90~95%, Salt NaCl mist 5%						
		subsequent test.	After test wash parts and return to room						
			ambient for 2 hours. [EIA-364-26B]						
Solderability		Solderable area shall have a	255°C±5°C of lead free soler pot						
3.5.22		minimum of 95% solder	temperature, for 5+0/-0.5 seconds.						
		coverage.							
	Resistance to Reflow	No mechanical damage	Temperature profile;as shown in Fig.3						
	Heat	allowed.	24hours at temp. 85±2 °C, R/H 85±5%.						
3.5.23			Recovery:0.5 hours at ambient						
			atmosphere; then apply Reflow 3 times.						
			(Fig.3)						
	Waterproof IPX-5	Protected against water jets	Water projected at all angles through a						
3.5.24			6.3mm nozzle at a flow rate of 12.5						
			liters/min at a pressure of 30kN/m2 for 3						
			minutes from a distance of 3 meters.(Fig.8)						
3.5.25	Waterproof IPX-8	Protected against water	Submersion for 30 minutes at a depth of						
5.5.25		submersion	1.5 meters. (Fig.8)						

Fig.1(END)

The meaning of text "mechanical damage" in the table above is :

- No dimension change
- No pinhole corrosion of plating
- No general corrosion of plating
- No adhesion problem of plating
- No blistering of plating
- No flaking of plating
- No loosen parts
- No cracks on any parts

108-61243

Rev.A

4. Product Qualification Test Sequence

		Test Group														
Para.	Test Examination	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		Test Sequence (a)														
3.5.1	Examination of Product	1,11	1	1	1	1,9	1,5	1,3	1,5	1,5	1,9	1,7	1,5	1,7	1,6	1,6
3.5.2	Contactresistance (Low Level)	2,8				2,6	2,4		2,4	2,4			2,4	2,4	3	3
3.5.3	Insulation resistance										2,5	2,5				
3.5.4	Dielectric withstanding Voltage										3,6	3,6				
3.5.5	Temperature Rise												3			
3.5.6	Mating force	3,7														
3.5.7	Un-mating force	4,6														
3.5.8	Durability	5														
3.5.9	Vibration					3										
3.5.10	Random Vabration					4										
3.5.11	Shock					5										
3.5.12	Reverse Mating Strength		2													
3.5.13	Soldering Strength			2												
3.5.14	Compulsory Insertion Strength				2											
3.5.15	Swing wrenching durability with 1kgf														2	
3.5.16	Swing wrenching durability with 10kgf															2
3.5.17	Dry cold (steady state)								3							
3.5.18	Dry heat (steady state)									3						
3.5.19	Thermal Shock										4					
3.5.20	Damp heat(steady state)											4				
3.5.21	Salt spray						3									
3.5.22	Solderability							2								
3.5.23	Resistance to Reflow Heat													3		
3.5.24	Waterproof IPX-5	9				7					7			5	4	4
3.5.25	Waterproof IPX-8	10				8					8			6	5	5

a) Numbers indicate sequence in which the tests are performed.

Fig.2

Fig.4 Termination Resistance Measuring Points

108-61243

Rev.A

Fig.7 Swing wrenching durability with 10kgf

Fig.8 Waterproof test

The applicable product descriptions and part numbers are as shown in Appendix.1.

RECEPTACLE									
Description	Part Number								
Micro USB Receptacle 5pos Water Proof Standard/Onboard	2108877-1								
Mating Plug									
Description	Part Number								
5Pos. Plug	-								
Sealing									
Description	Part Number								
Sealing	2108883-1								

Appendix.1