# Motor Controllers AC Semiconductor Motor Controller Type RSHR

### Soft starting and stopping of 3-phase squirrel cage motors

- · Low inrush and reduced vibration during starting
- Integrated bypassing of semiconductors
- Rated operational voltage: up to 600 VAC, 50/60 Hz
- Rated operational current up to 45A AC-53b
- LED status indicators

**Ordering Key** 

- Motor PTC protection
- Device over-temperature protection
- DIN rail or panel mounting

### **Product Description**

Compact easy-to-use AC semiconductor motor controller. With this controller 3phase motors with nominal load currents up to 45 A can be soft-started and/or softstopped. Starting and stopping time as well as initial torque can be independently adjusted by built-in potentiometers.

| H-line Motor Controller<br>Rotary Ramp profile setting<br>Rated operational voltage<br>Rated operational current |   |
|------------------------------------------------------------------------------------------------------------------|---|
| Control voltage<br>Options                                                                                       | ] |

# **Selection Guide**

| Rated operational | Rated operational   | current l <sub>e</sub> |              | Options                 |
|-------------------|---------------------|------------------------|--------------|-------------------------|
| voltage Ue        | 25A AC-53b          | 38A AC-53b             | 45A AC-53b   |                         |
| 220VACrms         | RSHR2225CV20        | RSHR2238CV20           | RSHR2245CV20 | V20: Basic              |
| 400VACrms         | RSHR4025CV20        | RSHR4038CV20           | RSHR4045CV20 | V21: 2 auxiliary relays |
| 480VACrms         | <b>RSHR4825CV20</b> | RSHR4838CV20           | RSHR4845CV20 |                         |
| 600VACrms         | <b>RSHR6025DV20</b> | RSHR6038DV20           | RSHR6045DV20 |                         |

### **Supply Specification**

| Rated operational voltage     |        |                        |
|-------------------------------|--------|------------------------|
| Ue through L1, L2, L3         | RSHR22 | 127/220 VAC -15% /+10% |
|                               | RSHR40 | 230/400 VAC -15% /+10% |
|                               | RSHR48 | 277/480 VAC -15% /+10% |
|                               | RSHR60 | 346/600 VAC -15% /+10% |
| Rated AC frequency            |        | 50/60 Hz±10%           |
| Dielectric strength           |        |                        |
| Dielectric voltage            |        | 2 kV (rms)             |
| Rated impulse withstand volt. |        | 4 kV (1.2/50µs)        |

### **Input Specifications**

| Rated control input           | C:24-550 VAC/DC      |
|-------------------------------|----------------------|
| voltage Uc, A1-A2:            | D:24-600 +10% VAC/DC |
| Rated control input current   | <1.5 mA              |
| Rated AC frequency            | 50/60 Hz±10%         |
| Dielectric strength           |                      |
| Dielectric voltage            | 2kVAC (rms)          |
| Rated impulse withstand volt. | 4kV (1.2/50 μs)      |
|                               |                      |

### Load Ratings

|                                                     | RSHR25             | RSHR38              | RSHR45                |
|-----------------------------------------------------|--------------------|---------------------|-----------------------|
| IEC rated operational current le (AC-53b)           | 25 A               | 38A                 | 45 A                  |
| Assigned motor rating @ 60°C/ UL rating @ 60°C      |                    |                     |                       |
| RSHR22                                              | 5.5kW / 10HP       | 11kW / 10HP         | 11kW / 15HP           |
| RSHR40                                              | 11kW / 15HP        | 18.5kW / 20HP       | 22kW / 25HP           |
| RSHR48                                              | 15kW / 20HP        | 22kW / 25HP         | 30kW / 30HP           |
| RSHR60                                              | 18.5kW / 25HP      | 22kW / 30HP         | 30kW / 40HP           |
| Overload cycle according to IEC/EN 60947-4-2 @ 40°C | 25A:AC-53b:4-5:65  | 38A: AC-53b: 4-5:85 | 45A: AC-53b: 4-5: 115 |
| @ 50°C                                              | 25A:AC-53b:4-5:85  | 38A:AC-53b:4-5:175  | 45A: AC-53b: 4-5: 135 |
| @ 60°C                                              | 25A:AC-53b:4-5:175 | 38A:AC-53b:4-5:355  | 45A: AC-53b: 4-5: 175 |
| Number of starts per hour @ 40°C/50°C/60°C          | 50/35/20           | 40/20/10            | 30/25/20              |
| Minimum load current                                | 500mA              | 500mA               | 500mA                 |



RSH R 48 45 C V20



### **Conductor Data**

| Line conductors:                |                        |
|---------------------------------|------------------------|
| L1, L2, L3/T1, T2, T3           |                        |
| according to IEC 60947          | 0.7516mm <sup>2</sup>  |
| maximum size                    |                        |
| solid                           | 2.516mm <sup>2</sup>   |
| finely stranded with end sleeve | 2.516mm <sup>2</sup>   |
| stranded                        | 2.525mm <sup>2</sup>   |
| UL/CSA rated data               |                        |
| UL rated data                   | AWG 144                |
| CSA rated data                  | AWG 146                |
| Terminal screws                 | 6xM5 (cage clamp)      |
| Tightening torque               | 1.52.5 Nm /1322 lb.in  |
| CSA data                        | max. 3.0Nm/ 26.5 lb/in |
| Stripping length                | 10 mm                  |
|                                 |                        |
| Secondary conductors:           |                        |
| A1, A2, 11, 21, 22, P1, P2      |                        |
| according to IEC 60947          | 0.752.5mm <sup>2</sup> |
| maximum size                    | 0.52.5mm <sup>2</sup>  |
| UL/CSA rated data               | AWG 2214               |
| Terminal screws                 | 7xM3 (cage clamp)      |
| Tightening torque               | 0.30.5 Nm/2.74.5 lb.in |

6 mm

## **General Specifications**

| <u></u>                          | ······                       |
|----------------------------------|------------------------------|
| Pollution degree                 | 3                            |
| Weight                           | 800g (approx.)               |
| Degree of protection             | IP20 (IEC 60529)             |
| Relative humidity                | <95% non-condensing          |
| Ramp up time                     | 110s                         |
| Ramp down time                   | 130s                         |
| Initial torque                   | 070%                         |
| Status indicator LEDs            |                              |
| Power supply ON                  | LED, green (continuous)      |
| Ramping                          | LED, yellow (intermittent)   |
| Bypass relay ON                  | LED, yellow (continuous)     |
| Over-temperature alarm           |                              |
| Device alarm                     | LED, red (intermittent)      |
| Motor PTC alarm                  | LED, red (continuous)        |
| Wrong phase sequence*            | LED, red (intermittent)      |
| Phase loss                       |                              |
| Phase loss alarm*                | LED, red (blinking at 4Hz)   |
| Under voltage alarm              | LED, red (blinking at 1.3Hz) |
| Motor PTC alarm input P1, P2     | Acc. to DIN 44081 and        |
|                                  | DIN 44082-1                  |
| Form designation                 | Form 1                       |
| Auxiliary relays: (V21 option)   |                              |
| Bypass relay activation          | Normally open (21,22)        |
| Over-temperature, phase          |                              |
| sequence, phase loss alarm       | Normally closed (11, 22)     |
| Auxiliary relay contact capacity | 3 A, 250 VAC                 |
|                                  | 3 A, 30 VDC                  |
| Installation altitude            | Above 1000m derate linearly  |
|                                  | by 1% of unit FLC per 100m   |
|                                  | to a maximum altitude of     |
|                                  | 2000m                        |
|                                  |                              |

### **Standards**

Operating temperature Storage temperature

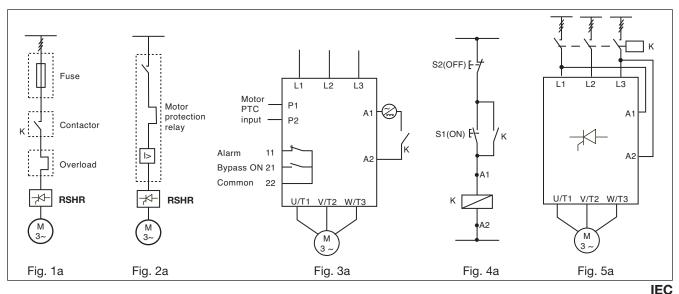
Stripping length

**Thermal Specifications** 

| Approvals | UL, cUL, CSA     |
|-----------|------------------|
| Markings  | CE               |
| Norms     | IEC/EN 60947-4-2 |

\* detection of these alarm conditions is made during power-up of the device

# Recommended Protection according to IEC/EN 60 947-4-2


-20° to +60°C (-4° to +140°F)

-50° to +85°C (-58° to +185°F)

|                                  | RSHR25          | RSHR38          | RSHR45           |
|----------------------------------|-----------------|-----------------|------------------|
| Type of coordination: 2          |                 |                 |                  |
| Semiconductor fuse               | Ferraz Shawmut  | Ferraz Shawmut  | Ferraz Shawmut   |
|                                  | 63A, Class URQ, | 80A, Class URQ, | 100A, Class URQ, |
|                                  | Art.No. 6.621   | Art.No. 6.621   | Art.No. 6.621    |
|                                  | CP URQ27x60/63  | CP URQ27x60/80  | CP URQ27x60/100  |
| Type of coordination: 1          |                 |                 |                  |
| Motor protection circuit breaker | ABB: MS325 -25  | ABB: MS450 -40  | ABB: MS450 -45   |
|                                  | Telemecanique:  | Telemecanique:  | Telemecanique:   |
|                                  | GV2-M22         | GV3-ME40        | GV3-ME63         |
|                                  | Sprecher+Schuh: | Sprecher+Schuh: | Sprecher+Schuh:  |
|                                  | KTA3-25-25A     | KTA3-100-40A    | KTA3-100-63A     |
| RK5 fuse                         | TRS45R 45A      | TRS70R 70A      | TRS90R 90A       |

### **CARLO GAVAZZI**

### Wiring Diagram



The motor controller provides by-passing of the semiconductors during running operation. Therefore the semiconductors can only be damaged by short-circuit currents during ramp-up and ramp-down. Please note that the motor controller does not isolate the motor from the mains.

# Figure 1: Protection of the device when using fuses.

Protection with semiconductor fuses is intended to protect the motor feeder and motor controller from damage due to short-circuit.

# Figure 2: Protection using a thermal-magnetic motor protection relay.

The motor feeder is protected but damage to the motor controller is possible. When motor failure occurs, if part of the motor winding limits the fault current and the motor feeder is protected, this type of protection can be considered acceptable.

#### Figure 3: Secondary conductors.

3.1: Control using a 2-position switch.

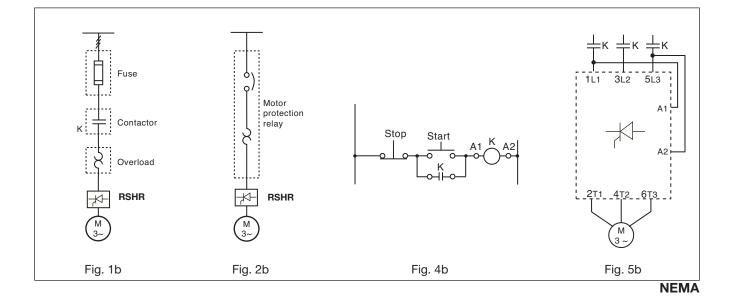
When K is closed, the control

input is supplied to A1, A2 and soft starting of the motor is performed. When K is opened, soft stopping is performed.

#### 3.2: Motor PTC input

When the motor PTC sensor is connected to P1, P2 the motor controller detects overheating of the motor windings. 3.3: Auxiliary Relays (Available on RSHR...V21 types only!)

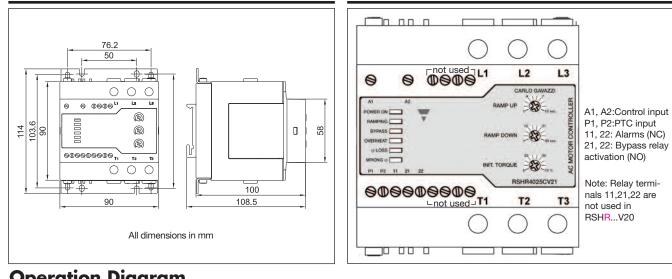
The Alarm relay 11, 22 (NC) can be connected in series with the supply to the coil of a mains contactor. The Bypass ON relay 21, 22 (NO) can be used in series with the supply


to the coil of an external bypass contactor.

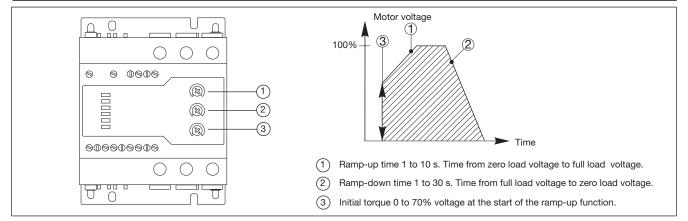
# Figure 4: Control using ON and OFF push buttons

Pushing S1 soft starts the RSHR. Pushing S2 soft stops the RSHR. K is an auxiliary contact of the mains contactor.

# Figure 5: Control using 2 phases


Connecting input A1, A2 to two of the incomming lines will soft start the motor when K is operated. When K is switched off, the motor will stop (no soft stop).



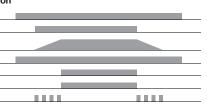



### **Dimensions**

### **Terminal Diagram**



# **Operation Diagram**




# **CARLO GAVAZZI**

## **Operation Diagrams for RSHR**

#### **Diagram 1: Normal Operation**

Mains Supply L1, L2, L3 Control Input Uc Motor Supply T1, T2, T3 Power ON-LED Bypass ON auxiliary relay Bypass ON LED Ramping LED



#### Diagram 2a: Device over-temperature alarm

| Mains Supply L1, L2, L3                                                | _ |
|------------------------------------------------------------------------|---|
| Device over-temperature<br>Control Input Uc                            |   |
| Motor supply T1, T2, T3<br>Alarm auxiliary relay<br>Overheat alarm LED |   |

#### Diagram 2b: Motor PTC alarm

| Mains Supply L1, L2, L3    |  |  |
|----------------------------|--|--|
| Motor PTC over-temperature |  |  |
| Control Input Uc           |  |  |
| Motor supply T1, T2, T3    |  |  |
| Alarm auxiliary relay      |  |  |
| Overheat alarm LED         |  |  |

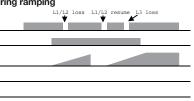
#### Diagram 2c: Phase loss during power up

| Mains Supply L1, L2, L3<br>Control Input Uc | L3 Loss |
|---------------------------------------------|---------|
| Motor supply T1, T2, T3                     |         |
| Alarm auxiliary relay                       |         |
| Phase loss alarm LED                        |         |

#### Notes

Note1: After activation of the by-pass relay, there is a delay of 1 sec, during which removal of the control input will not initiate the ramp-down function.

Note 2: Cycling of the control input should be limited to a rate not exceeding 3 seconds ON and 3 seconds OFF. At faster cycling times, it is not guaranteed that the output of the unit will respond to the given input.


Important: The number of starts per hour and Overload Cycle values should always be taken into consideration when cycling is used.

Note 3: Auxiliary relays available only on RSHR...V21 types

Note 4: A phase loss on L1 or L2 causes the device to reset as these phases provide the internal power supply.

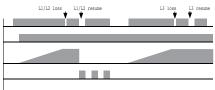
#### Diagram 2d: Phase loss during ramping

Mains Supply L1, L2, L3 Control Input Uc Motor supply T1, T2, T3 Phase loss alarm LED Alarm auxiliary relay



#### Diagram 2e: Phase loss while bypass is ON

Mains Supply L1, L2, L3 Control Input Uc Motor supply T1, T2, T3 Phase loss alarm LED Alarm auxiliary relay




#### Diagram 2f: Phase loss while bypass is being activated

Mains Supply L1, L2, L3 Control Input Uc Motor supply T1, T2, T3 Phase loss alarm LED

Alarm auxiliarv relav

Control Input Uc



#### Diagram 2g : Wrong phase sequence alarm

wrong phase sequence Mains Supply L1, L2, L3 Motor supply T1, T2, T3 Alarm auxiliary relay Wrong  $\phi$  alarm LED 

Note 5: Phase sequence and phase loss alarms are only detected if they occur during power up, when L1, L2, L3 are switched ON.

Note 6: When a motor PTC is connected, electromagnetic noise may be conducted into the unit. Thus if abnormal function is observed, the use of ferrite beads on the PTC wire (at the unit end) is recommended.

Note 7: Repetitive voltage dips on phase L1 and/or L2 during operation may lead to overheating of the motor. In case the by-pass relays are activated and the repetition rate of these dips is such that the internal supply voltage falls below a preset limit, the by-pass relays will be automatically switched off. This state is indicated by blinking of the phase loss led at 1.3Hz. Reset of the supply L1, L2 and L3 is necessary to resume normal function.