Evaluates: MAX40201

General Description

The MAX40201 evaluation kit (EV kit) provides a proven design to evaluate the MAX40201 dual-channel, high-precision, high-voltage, current-sense amplifier. This EV kit demonstrates the MAX40201 in an ultra-small, 1.3mm x 2mm, 8-bump wafer-level package (WLP).

The EV kit PCB comes with a MAX40201FAWA+ installed, which is the 50V/V gain version. Other gain options are available. Contact the factory for the pin-compatible MAX40201TAWA+ (G = 25V/V), MAX40201HAWA+ (G = 100V/V), and MAX40201WAWA+ (G = 200V/V).

EV Kit Contents

MAX40201 EV Kit Board

Features

- Precision Real-Time Current Monitoring
- 0V to +76V Input Common-Mode Range
- Proven PCB Layout
- Fully Assembled and Tested

Ordering Information appears at end of data sheet.

Quick Start

Required Equipment

The following items are required for operation:

- MAX40201 EV kit
- +3.3V, 1A DC power supply
- +5V, 3A DC power supply
- An electronic load capable of sinking 3A (i.e., HP6060B)
- Two digital voltmeters

Procedure

The MAX40201 EV kit is fully assembled and tested. Follow the steps below to verify the board operation. **Caution: Do not turn on power supply or the electronic load until all connections are made**.

- Connect the positive terminal of the +3.3V supply to the VDD test point and the negative terminal of the supply to the nearest GND test point.
- Connect the positive terminal of the +5V supply to the VSENSE+ test point and the negative terminal of the supply to the nearest GND test point.
- 3) Set the electronic load to sink 1A.
- Connect the positive terminal of the electronic load to the VSENSE- test point and the negative terminal of the supply to the nearest GND test point.
- 5) Connect the first voltmeter between test points RS1+ and RS1- to measure V_{SENSE1}.
- 6) Connect the second voltmeter between VOUT1 and the nearest GND test points.
- 7) Turn on the power supplies.
- 8) Enable the electronic load.
- 9) Verify that the first voltmeter displays 50mV and the second voltmeter displays 2.5V.
- 10) Repeat the steps for the second current sense amplifier using the VSENSE2+ and VSENSE2- test points as the inputs and VOUT2 test point as the output.

Detailed Description of Hardware

The MAX40201 EV kit provides a proven design to evaluate the MAX40201 high-side, dual-channel, current-sense amplifier, which offers precision accuracy specifications of input offset voltage (V_{OS}) less than 10μ V (max) and gain error less than 0.1% (max).

Applying the V_{RS+} Supply and the Load

The EV kit is installed with a MAX40201FAWA+, which has a 50V/V gain. The current-sense resistors (R_{SENSE}) value is 0.05 Ω with ±0.5% tolerance. The V_{OUT} for each channel given by:

 $V_{OUT} = I_{LOAD} \times R_{SENSE} \times A_V$

where A_V is the gain and I_{LOAD} is the current load applied to the device. Normal operating V_{RS+} and V_{RS-} range is 0V to 76V.

MAX40201 EV Kit Bill of Materials

Measuring the Load Current

The load current is measured as a voltage drop (V_{SENSE}) across an external sense resistor. This voltage is then amplified by the current-sense amplifier and presented at its VOUT_ pin. Like all differential amplifiers, the output voltage has two components of error (an offset error and a gain error). The offset error affects accuracy at low currents and a gain error affect accuracy at large currents. Both errors affect accuracy at intermediate currents. By minimizing both offset and gain errors, accuracy can be optimized over a wide dynamic range.

ITEM	REF_DES DNI/DNP QTY		MFG PART #	MANUFACTURER	VALUE	DESCRIPTION	COMMENTS				
1	C1	-	1	C0603C104K4RAC; GCM188R71C104KA37; C1608X7R1C104K; GRM188R71C104K; C0603X7R160-104KNE	KEMET/MURATA/TDK/VENKEL LTD.	0.1UF	CAPACITOR; SMT (0603); CERAMIC CHIP; 0.1µF; 16V; TOL = 10%; TG = -55°C TO +125°C; TC = X7R;				
2	C2	-	1	GRM21BR71C475KA73	MURATA	4.7UF	CAPACITOR; SMT (0805); CERAMIC CHIP; 4.7μF; 16V; TOL = 10%; MODEL = GRM SERIES; TG = -55°C TO +125°C; TC = X7R				
3	GND, TP1-TP4	-	5	5011	KEYSTONE	N/A	TEST POINT; PIN DIA = 0.125IN; TOTAL LENGTH = 0.445IN; BOARD HOLE = 0.063IN; BLACK; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;				
4	R1, R2	-	2	LVK12R050DE	OHMITE MFG CO.	0.05	RESISTOR; 1206; 0.05Ω; 0.5%; 50PPM; 0.5W; METAL FILM				
5	R3-R8	-	6	CRCW06030000ZS; MCR03EZPJ000; ERJ-3GEY0R00	VISHAY DALE/ROHM/PANASONIC	0	RESISTOR; 0603; 0Ω; 0%; JUMPER; 0.10W; THICK FILM				
6	RS1+, RS1-, RS2+, RS2-	-	4	5000	KEYSTONE	N/A	TEST POINT; PIN DIA = 0.1IN; TOTAL LENGTH = 0.3IN; BOARD HOLE = 0.04IN; RED; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;				
7	U1	-	1	MAX40201	MAXIM	MAX40201	EVKIT PART-IC; DUAL 0V TO 76V CURRENT SENSE AMPLIFIER; 0Z36; PACKAGE OUTLINE: 21-100147; WLP8				
8	VDD, VOUT1, VOUT2, VSENSE1+, VSENSE1-, VSENSE2+, VSENSE2-	-	7	5010	KEYSTONE	N/A	TESTPOINT WITH 1.80MM HOLE DIA, RED, MULTIPURPOSE;				
9	C3-C8	DNP	0	C1206C102K1RAC	KEMET	1000PF	CAPACITOR; SMT (1206); CERAMIC CHIP; 1000PF; 100V; TOL = 10%; TG = -55°C TO +125°C; TC = X7R				
10	C9, C10	DNP	0	C0603C181K5GAC	KEMET	180PF	CAPACITOR; SMT (0603); CERAMIC CHIP; 180PF; 50V; TOL = 10%; MODEL = COG; TG=:55°C TO +125°C; TC = +/				
11	PCB	-	1	MAX40201	MAXIM	PCB	PCB Board:MAX40201 EVALUATION KIT				
TOTAL			28								
NOTE: D	NOTE: DNI-> DO NOT INSTALL; DNP> DO NOT PROCURE										

MAX40201 EV Kit Schematic

Evaluates: MAX40201

MAX40201 EV Kit PCB Layouts

MAX40201 EV Kit Component Placement Guide—Component Side

MAX40201 EV Kit PCB Layout—Component Side

MAX40201 EV Kit PCB Layout—Solder Side

Evaluates: MAX40201

Ordering Information

PART	TYPE
MAX40201EVKIT#	EV Kit

#Denotes RoHS-compliant.

Evaluates: MAX40201

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	2/17	Initial release	_

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.