

August 1986 Revised April 2000

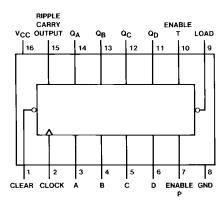
DM74S161 • DM74S163 Synchronous 4-Bit Binary Counters

General Description

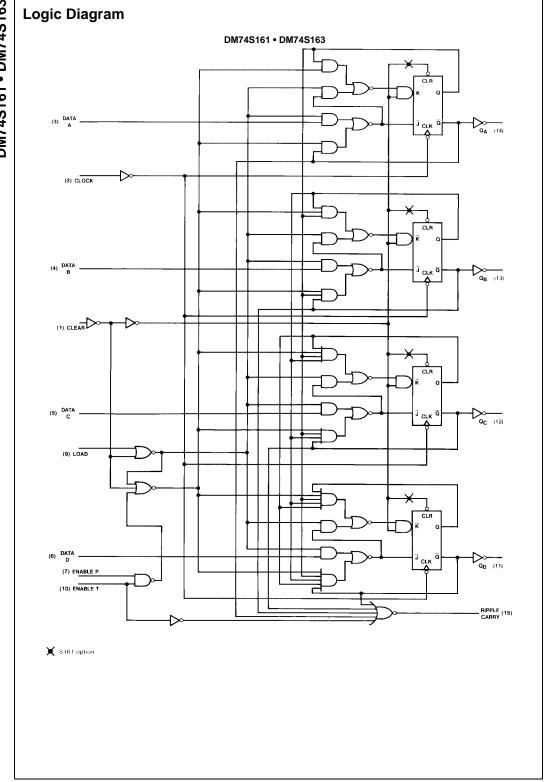
These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. They are 4-bit binary counters. The carry output is decoded by means of a NOR gate, thus preventing spikes during the normal counting mode of operation. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count enable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.

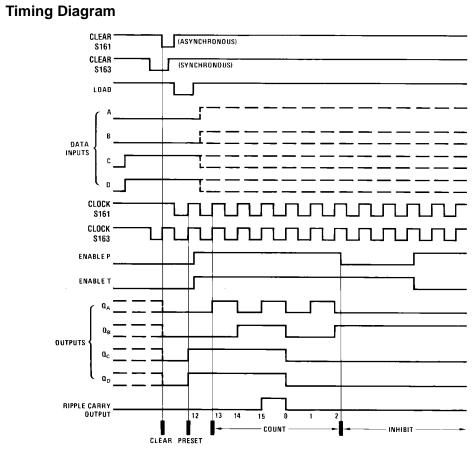
These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a LOW level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable input.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both count-enable inputs (P and T) must be HIGH to count, and input T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a HIGH-level output pulse with a duration approximately equal to the HIGH-level portion of the $\mathbf{Q}_{\mathbf{A}}$ output. This HIGH-level overflow ripple carry pulse can be used to enable successive cascaded stages.

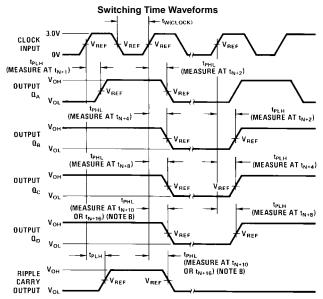

Features

- Synchronously programmable
- Internal look-ahead for fast counting
- Carry output for n-bit cascading
- Synchronous counting
- Load control line
- Diode-clamped inputs

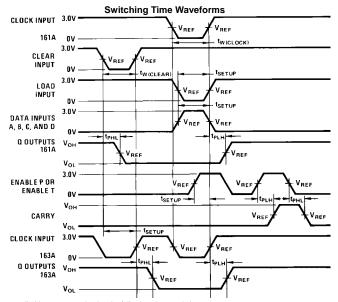

Ordering Code:


Order Number	Package Number	Package Description
DM74S161N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
DM74S163N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Connection Diagram



Sequence:


- Clear outputs to zero
- 2. Preset to binary twelve
- 3. Count to thirteen, fourteen, fifteen, zero, one and two
- 4. Inhib

Parameter Measurement Information

Note A:The input pulses are supplied by generators having the following characteristics: $PRR \leq 1 \text{ MHz}, \text{ duty cycle} \leq 50\%, Z_{OUT} \approx 50\Omega. \text{ For DM74S161/163}, t_r \leq 2.5 \text{ ns}, t_f \leq 2.5 \text{ ns}. \text{ Vary PRR to measure } f_{\text{MAX}}.$

Note B: Outputs Q_D and carry are tested at t_n + 16 for DM74S161, SM74S163 where t_n is the bit time when all outputs are LOW Note C: $V_{REF} = 1.5V$.

Note A: The input pulses are supplied by generators having the following characteristics: $\mathsf{PRR} \le 1 \; \mathsf{MHz}, \; \mathsf{duty} \; \mathsf{cycle} \le 50\%, \; \mathsf{Z}_{\mathsf{OUT}} \approx 50\Omega. \; \mathsf{t_f} \le 2.5 \; \mathsf{ns}, \; \mathsf{t_f} \le 2.5 \; \mathsf{ns}. \; \mathsf{Vary} \; \mathsf{PRR} \; \mathsf{to} \; \mathsf{measure} \; \mathsf{f}_{\mathsf{MAX}}.$

Note B: Enable P and enable T setup times are measured at $t_{n} + 0. \label{eq:total_potential}$

Note C: $V_{REF} = 1.5V$.

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V Input Voltage 5.5V Operating Free Air Temperature Range $0^{\circ}\text{C to } +70^{\circ}\text{C}$ Storage Temperature Range $-65^{\circ}\text{C to } +150^{\circ}\text{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage		2			V
V _{IL}	LOW Level Input Voltage				0.8	V
I _{OH}	HIGH Level Output Curre	nt			-1	mA
I _{OL}	LOW Level Output Currer	nt			20	mA
f _{CLK}	Clock Frequency (Note 2)		0		40	MHz
	Clock Frequency (Note 3)		0		35	1011 12
t _W	Pulse Width (Note 2)	Clock	10			ns
		Clear (Note 5)	10			
	Pulse Width (Note 3)	Clock	12			
		Clear (Note 5)	12			
t _{SU}	Setup Time (Note 2)	Data	4			ns
		Enable P or T	12			
		Load	14			
		Clear (Note 4)	14			
	Setup Time (Note 3)	Data	5			
		Enable P or T	14			
		Load	16			
		Clear (Note 4)	16			
t _H	Hold Time (Note 2)	Data	3			ns
		Others	0			
	Hold Time (Note 3)	Data	5			
		Others	2			
t _{REL}	Load or Clear Release Time (Note 2)		12			ns
	Load or Clear Release Time (Note 3)		14			115
T _A	Free Air Operating Temperature		0		70	°C

Note 2: $C_L = 15 \text{ pF}, R_L = 280\Omega, T_A = 25^{\circ}\text{C} \text{ and } V_{CC} = 5\text{V}.$

Note 3: $C_L = 50$ pF, $R_L = 280\Omega$, $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Note 4: Applies only to the DM74S163 which has synchronous clear inputs.

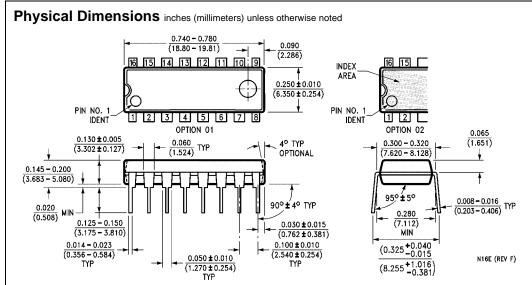
Note 5: Applies only to the DM74S161 which has asynchronous clear inputs.

Electrical Characteristics

over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 6)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.2	V
V _{OH}	HIGH Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$		2.7	3.4		V
V _{OL}	LOW Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IH} = Min, V_{IL} = Max$				0.5	V
I _I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$				1	mA
I _{IH}	LOW Level	V _{CC} = Max	CLK, Data			50	μА
	Input Current	$V_I = 2.7V$	Others	-10		-200	μΛ
I _{IL}	LOW Level	V _{CC} = Max	Enable T			-4	mA
	Input Current	$V_I = 0.5V$	Others			-2	
Ios	Short Circuit Output Current	V _{CC} = Max (Note 7)		-40		-100	mA
I _{CC}	Supply Current	V _{CC} = Max			95	160	mA

Note 6: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.


Note 7: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

	Parameter		$R_L = 280\Omega$				
Symbol		From (Input)	C _L = 15 pF		C _L = 50 pF		Units
		To (Output)	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency		40		35		MHz
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clock to Ripple Carry		25		25	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clock to Ripple Carry		25		28	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clock to Any Q		15		15	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clock to Any Q		15		18	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Enable T to Ripple Carry		15		18	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Enable T to Ripple Carry		15		18	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output (Note 8)	Clear to Any Q		20		24	ns

Note 8: Propagation delay for clearing is measured from clear input for the DM74S161 and from the clock input transition for the DM74S163.

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com