

Sirenza Microdevices' SPA-1218 is a high efficiency GaAs Heterojunction Bipolar Transistor (HBT) amplifier housed in a low-cost surface-mountable plastic package. These HBT amplifiers are fabricated using molecular beam epitaxial growth technology which produces reliable and consistent performance from wafer to wafer and lot to lot.

This product is specifically designed for use as a driver amplifier for infrastructure equipment in the 1960 MHz PCS band. Its high linearity makes it an ideal choice for multi-carrier and digital applications.

SPA-1218 1960 MHz 1 Watt Power Amplifier with Active Bias

Product Features

- High Linearity Performance: +21.3 dBm IS-95 Channel Power at -55 dBc ACP +48 dBm OIP3 Typ.
- On-chip Active Bias Control
- Patented High Reliability GaAs HBT Technology
- Surface-Mountable Plastic Package

Applications

- PCS Systems
- Multi-Carrier Applications

Symbol	Parameters: Test Conditions: Z ₀ = 50 Ohms, V _{cc} =5V, Temp = 25ºC	Units	Min.	Тур.	Max.
f _o	Frequency of Operation	MHz	1930		1990
P _{1dB}	Output Power at 1dB Compression [1,2]	dBm		29.0	
ACP	Adjacent Channel Power ^[1] IS-95 @1960MHz, ±885 KHz, P _{out} = 21.3 dBm	dBc		-55.0	-52.0
S ₂₁	Small Signal Gain [1,2]	dB	11.5	12.5	13.5
S ₁₁	Input VSWR [1,2]	-		1.5:1	
OIP ₃	Output Third Order Intercept Point ^[2] Power out per tone = +14 dBm	dBm		48.0	
NF	Noise Figure ^[1,2]	dB		7.0	
I _{cc}	Device Current ^[1,2]	mA	275	310	330
V _{cc}	Device Voltage ^[1,2]	V	4.75	5.0	5.25
R _{th} , j-l	Thermal Resistance (junction - lead) , $\rm T_{L}{=}85^{o}\rm C$	⁰C/W		35	

[1] Optimal ACP tune

The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No pattent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2002 Sirenza Microdevices, Inc. All worldwide rights reserved.

^[2] Optimal IP3 tune

1960 MHz Application Circuit Data, I_{cc}=320 mA, T=+25C, V_{cc}=5V Note: Tuned for ACP

Pin #	Function	Description	Device Schematic
1	Vcc	VCC is the supply voltage for the active bias netw Bypassing in the appropriate location as shown or application schematic is required for optimum RF performance.	
2	Vbias	Vbias is the bias control pin for the active bias nei Device current is set by the current into this pin. Recommended configuration is shown in the Appli Schematic. Bypassing in the appropriate location shown on application schematic is required for op RF performance.	cation as (2) ACTIVE BIAS (5-8)
3	RF In	RF input pin. This pin requires the use of an extern DC blocking capacitor chosen for the frequency of operation.	
4	N/C	No connection	
5, 6, 7, 8	RF Out/Vcc	RF output and bias pin. Bias should be supplied to pin through an external RF choke. Because DC bi is present on this pin, a DC blocking capacitor sho be used in most applications (see application schematic). The supply side of the bias network si be well bypassed. An output matching network is necessary for optimum performance.	asing buld
EPAD	Gnd	Exposed area on the bottom side of the package to be soldered to the ground plane of the board to thermal and RF performance. Several vias should located under the EPAD as shown in the recomme land pattern (page 7).	be
		CNDF	Absolute Maximum Ratings
	Caution	n: FSD sensitive	Parameter (Ta = 25ºC) Absolute Limit

Caution: ESD sensitive

Appropriate precautions in handling, packaging and testing devices must be observed.

The Moisture Sensitivity Level rating for this device is level 1 (MSL-1) based on the JEDEC 22-A113 standard classification. No special moisture packaging/handling is required during storage, shipment, or installation of the devices.

Absolute Maximum Ratings

Parameter (Ta = 25ºC)	Absolute Limit
Max. Supply Current (I_{cc}) at V_{cc} typ.	750 mA
Max. Device Voltage (V_{cc}) at I _{cc} typ.	6.0 V
Max. RF Input Power	29 dBm
Max. Junction Temp. (T _J)	+160 ℃
Max. Storage Temp.	+150 ℃

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Bias Conditions should also satisfy the following expression: $I_{cc}V_{cc}$ (max) < (T_J - T_L)/R_{th},j-I

Part Number Ordering Information

	•	
Part Number	Devices Per Reel	Reel Size
SPA-1218	500	7"

Package Outline Drawing

(See SMDI MPO-101644 for tolerances, available on our website)

