

Performance

- ◆ 0% to 100% relative humidity range
- ◆ -40°C to 125°C temperature range
- ◆ Very low power consumption
- ◆ Operates from 1.5V to 3.6V
- ◆ Fast response time 5 seconds typical
- ◆ Built-in heater for fast recovery from saturation
- * Recovers fully from condensation
- ◆ Fast conversion time 14ms typical

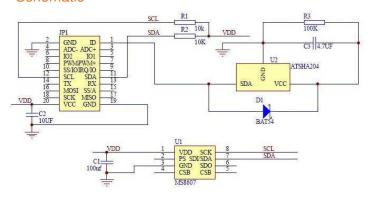
Features

- ◆ 20-pin Xplained Pro compatible connector
- ◆ I²C interface
- * Xplained Pro hardware identification chip
- ◆ Atmel Studio 6 Project available for download
- * μC C code available for download
- ◆ Selectable 16-24 bits resolution for pressure
- ◆ Selectable 8-12 bit resolution for humidity
- ◆ Selectable 12-14 bit resolution for temperature

MEAS MS8607 XPLAINED PRO BOARD

Digital Pressure and Humidity
Digital Component Sensor (DCS) Development Tools

The MS8607 Xplained Pro provides the necessary hardware to interface the MS8607 digital pressure, relative humidity and temperature sensor to any system that utilizes Xplained Pro compatible expansion ports configurable for I2C communication. The MS8607 sensor is a self-contained pressure, humidity and temperature sensor that is fully calibrated during manufacture. The sensor can operate from 1.5V to 3.6V. The MS8607 is ideal for weather station applications embedded into compact devices and any applications in which pressure, humidity and temperature monitoring is required.

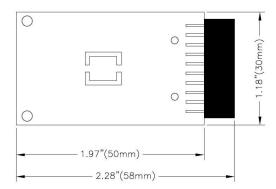

Refer to the MS8607 data sheet for detailed information regarding operation of the IC:

http://www.te.com/usa-en/product-CAT-BLPS0018.html

Specifications

- ◆ Operating pressure range: 300 to 1200 mbar
- ◆ Measures relative humidity from 0% to 100%
- ◆ Measures temperature from -40°C to 125°C
- ◆ Extended pressure range 10 to 2000 mbar
- ◆ Fast response time
- ◆ I²C communication
- ◆ Very low power consumption

Schematic



Connector Pin Assignments (I²C Communications)

System Plug

Connector JP1						
Pin No.	Signal	Description	Pin No.	Signal	Description	
1	ID	Hardware identification	11	SDA	TWI Serial Data	
2	GND	Ground	12	SCL	TWI Serial Clock	
3	N/C	Not Connected	13	N/C	Not Connected	
4	N/C	Not Connected	14	N/C	Not Connected	
5	N/C	Not Connected	15	N/C	Not Connected	
6	N/C	Not Connected	16	N/C	Not Connected	
7	N/C	Not Connected	17	N/C	Not Connected	
8	N/C	Not Connected	18	N/C	Not Connected	
9	N/C	Not Connected	19	GND	Ground	
10	N/C	Not Connected	20	Vdd	Power Supply	

Dimensions (mm)

Detailed Description

I²C Interface

The peripheral module can interface to the host being plugged directly into an Xplained Pro extension port (configured for I²C) through connector JP1.

External Control Signals

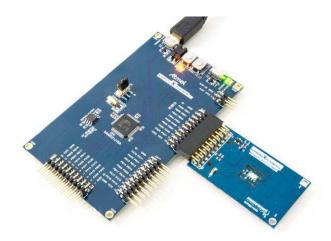
The IC operates as an I²C slave using the standard 2 wire I²C connection scheme. The IC is controlled either by the host (through the Xplained Pro connector). In cases where one or more of the SCL and SDA signals are driven from an external source, 10k resistors R1, R2 provide pull-up. However, this also increases the apparent load to the external driving source. If the external source is not capable of driving these loads (10k), they should be removed.

Reference Materials

The complete software kit is available for download at: Link to MS8607_CPROJ.zip

Digital Pressure and Humidity DCS Development Tools

Drivers & Software


Detailed example software and drivers are available that execute directly without modification on a number of development boards that support an integrated or synthesized microprocessor. The download contains several source files intended to accelerate customer evaluation and design. The source code is written in standard ANSI C format, and all development documentation including theory/operation, register description, and function prototypes are documented in the interface file.

Functions Summary

Enumerations	
enum	ms8607_humidity_i2c_master_mode {
	ms8607_i2c_hold, ms8607_i2c_no_hold
	0007
enum	ms8607_status {
	ms8607_status_ok, ms8607_status_no_i2c_acknowledge, ms8607_status_i2c_transfer_error, ms8607_status_crc_error,
	ms8607_status_heater_on_error
	}
enum	ms8607_humidity_resolution {
	ms8607_humidity_resolution_12b = 0, ms8607_humidity_resolution_8b,
	ms8607_humidity_resolution_10b, ms8607_humidity_resolution_11b
enum	ms8607_battery_status { ms8607_battery_ok, ms8607_battery_low
	Ilisooo7_battery_ok, Ilisooo7_battery_low
enum	ms8607 heater status {
	ms8607_heater_off, ms8607_heater_on
	}
enum	ms8607_pressure_resolution {
	ms8607_pressure_resolution_osr_256 = 0, ms8607_pressure_resolution_osr_512,
	ms8607_pressure_resolution_osr_1024, ms8607_pressure_resolution_osr_2048, ms8607 pressure resolution osr 4096, ms8607 pressure resolution osr 8192
	IIIS0007_pressure_resolution_osi_4030, IIIS0007_pressure_resolution_osi_0132
Functions	
void	ms8607_init (void)
	Configures the SERCOM I2C master to be used with the MS8607 device.
bool	ms8607_is_connected (void)
	Reset the MS8607 device.
enum ms8607_status	ms8607_reset (void)
	Reset the MS8607 device.
enum ms8607_status	ms8607_set_humidity_resolution (enum ms8607_humidity_resolution)
	Set Humidity sensor ADC resolution.
void	ms8607_set_pressure_resolution (enum ms8607_pressure_resolution)
	Set Pressure sensor ADC resolution.
void	ms8607_set_humidity_i2c_master_mode (enum ms8607_humidity_i2c_master_mode)
	Set I2C master mode.
enum ms8607 status	ms8607_read_temperature_pressure_humidity (float *, float *, float *)
	Reads the temperature, pressure and relative humidity value.
enum ms8607_status	ms8607_get_battery_status (enum ms8607_battery_status *)
	Provide battery status.
enum ms8607_status	ms8607_enable_heater (void)
	Enable heater.
enum ms8607_status	ms8607_disable_heater (void)
	Disable heater.
enum ms8607_status	ms8607_get_heater_status (enum ms8607_heater_status *)
	Get heater status.
enum ms8607_status	ms8607_get_compensated_humidity (float, float, float *)
	Returns result of compensated humidity
	Note: This function shall only be used when the heater is OFF. It will return an error otherwise
enum ms8607_status	ms8607_get_dew_point (float, float *)
	Returns the computed dew point
	Note: This function shall only be used when the heater is OFF. It will return an error otherwise
	,

Project Setup

This project is based on ATSAMD20J18 board with Measurement Specialties Xplained Pro extension board connected to EXT1 pad as shown on figure below.

Running the Application

- 1. Download the MS8607 Xplained Pro example package on TE Website
- 2. Decompress the archive file
- 3. Open the .cproj project file with Atmel Studio 6
- 4. You will now be able to build the MS8607 example project -
- 5. Finally, run the build result on your Xplained Pro Board -

Application Code

This section is intended to provide a basic example of functionality.

```
**
* \file main.c
*

* \brief MS8607 Pressure monitoring application file
*

* Copyright (c) 2014 Measurement Specialties. All rights reserved.
*
*/
```

#include_<asf.h>

```
float temperature;
float pressure;
float relative_humidity;
float compensated_humidity;
float dew_point;
int main (void)
{
```

Digital Pressure and Humidity DCS Development Tools

```
enum ms8607_status status;
float last_temperature = 0;
float variation = 0;
uint8_t n=0;
enum ms8607_heater_status heater;
system_init();
delay_init();
// Configure device and enable
ms8607_init();
if( !ms8607_is_connected() )
          return -1;
// Reset MS8607
status = ms8607_reset();
if( status != ms8607_status_ok)
          return -1;
// Configure resolution
status = ms8607_set_humidity_resolution(ms8607_humidity_resolution_12b);
if( status != ms8607_status_ok)
          return -1;
ms8607_set_pressure_resolution(ms8607_pressure_resolution_osr_8192);
// Monitor temperature every 500ms
while (1) {
          if( n&1 )
                     ms8607_set_humidity_i2c_master_mode(ms8607_i2c_hold);
          else
                     ms8607_set_humidity_i2c_master_mode(ms8607_i2c_no_hold);
          // Enable heater for 10s
          if( (n==10) ) {
                     status = ms8607_enable_heater();
                     if( status != ms8607_status_ok)
                     return -1;
          }
          // Disable heater after 20s
          if( (n==20) ) {
                     status = ms8607_disable_heater();
                     if( status != ms8607_status_ok)
                                           return -1;
          }
          // Check heater status
```

Digital Pressure and Humidity DCS Development Tools

```
status = ms8607_get_heater_status(&heater);
                     if( status != ms8607_status_ok)
                                return -1;
                     status = ms8607_read_temperature_pressure_humidity(&temperature, &pressure, &relative_humidity);
                     if( status != ms8607_status_ok)
                                return -1;
                      status = ms8607_get_compensated_humidity(temperature,relative_humidity,&compensated_humidity);
                     status = ms8607_get_dew_point(temperature,relative_humidity,&dew_point);
                     variation += temperature - last_temperature;
                     // Look for significant temperature variation
                     if ( variation >= 0.5 ) {
                                // Yes, so turn LED on.
                                port_pin_set_output_level(LED_0_PIN, LED_0_ACTIVE);
                                variation = 0;
                     } else if ( variation <= -0.5 ) {</pre>
                                // No, so turn LED off.
                                port_pin_set_output_level(LED_0_PIN, LED_0_INACTIVE);
                                variation = 0;
                     }
                     delay_ms(1000);
                     last_temperature = temperature;
                     n++;
                     if(n==50) n=0;
          }
}
```

MEAS MS8607 XPLAINED PRO BOARD

Digital Pressure and Humidity DCS Development Tools

Ordering Information

Description	Part Number
MEAS MS8607 XPLAINED PRO BOARD	DPP901A000

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

te.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

MEAS, Measurement Specialties (logo), TE Connectivity and TE connectivity (logo) are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2016 TE Connectivity Ltd. family of companies All Rights Reserved.

PRODUCT SHEET

MEAS France SAS, a TE Connectivity company. Impasse Jeanne Benozzi CS 83 163 31027 Toulouse Cedex 3, FRANCE Tel:+33 (0) 5 820 822 02 Fax: +33 (0) 5 820 821 51 customercare.tlse@te.com