

Rev. V1

Designed for 960–1215 MHz long pulse common base amplifier applications such as JTIDS and Mode S transmitters.

- Guaranteed performance @ 1.215 GHz, 36 Vdc Output power = 120 W Peak Gain = 7.6 dB min., 8 .5 dB (typ.)
- 100% tested for load mismatch at all phase angles with 3:1 VSWR
- Hermetically sealed industry standard package
- Silicon nitride passivated
- Gold metalized, emitter ballasted for long life and resistance to metal migration
- Internal input and output matching for broadband operation

Product Image

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CES}	55	Vdc
Collector–Base Voltage	V _{CBO}	55	Vdc
Emitter-Base Voltage	V _{EBO}	3.5	Vdc
Collector Current — Peak (1)	Ic	15	Adc
Total Device Dissipation @ T _C = 25°C (1), (2) Derate above 25°C	P _D	380 2.17	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +200	°C
Junction Temperature	TJ	200	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (3)	R _{eJC}	0.46	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (I _C = 60 mAdc, V _{BE} = 0)	V _{(BR)CES}	55	-	_	Vdc
Collector-Base Breakdown Voltage (I _C = 60 mAdc, I _E = 0)	V _{(BR)CBO}	55	_	_	Vdc
Emitter–Base Breakdown Voltage (I _E = 10 mAdc, I _C = 0)	V _{(BR)EBO}	3.5	_	_	Vdc
Collector Cutoff Current (V _{CB} = 36 Vdc, I _E = 0)	Ісво	_	_	25	mAdc

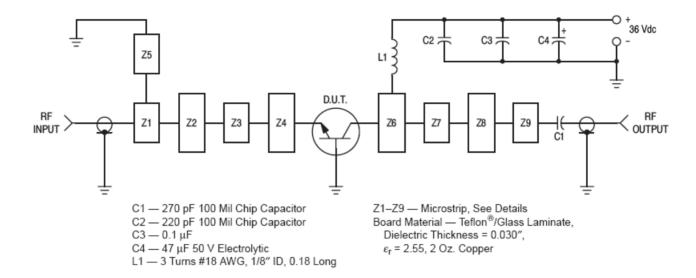
NOTES:

(continued)

- 1. Under pulse RF operating conditions.
- 2. These devices are designed for RF operation. The total device dissipation rating applies only when the device is operated as RF amplifiers.
- 3. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.

MRF10120

Microwave Long Pulse Power Silicon NPN Transistor 120W (peak), 960–1215MHz


Rev. V1

ELECTRICAL CHARACTERISTICS — continued (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS	•	•		•	
DC Current Gain (I _C = 5.0 Adc, V _{CE} = 5.0 Vdc)	h _{FE}	20	_	_	_
FUNCTIONAL TESTS (7.0 μs Pulses @ 54% duty cycle for 3.4 ms	then off for 4.5	ms; overall d	uty cycle = 23°	%)	
Common–Base Amplifier Power Gain (V _{CC} = 36 Vdc, P _{out} = 120 W Peak, f = 1215 MHz)	G _{PB}	7.6	8.5	_	dB
Collector Efficiency (V _{CC} = 36 Vdc, P _{out} = 120 W Peak, f = 1215 MHz)	η	50	55	_	%
Load Mismatch (V _{CC} = 36 Vdc, P _{out} = 120 W Peak, f = 1215 MHz, VSWR = 3:1 All Phase Angles)	Ψ	No Degradation in Output Power			

Rev. V1

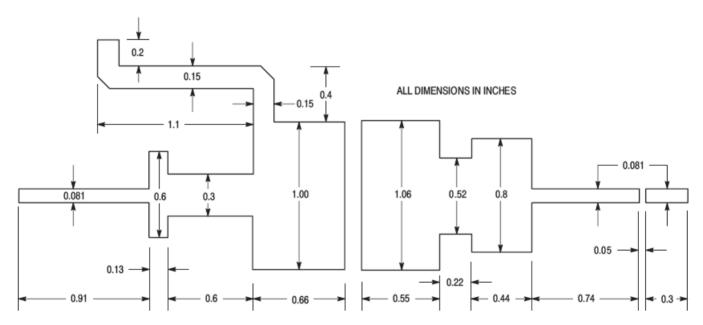
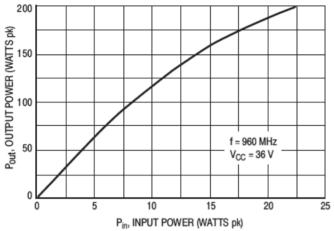



Figure 1. Test Circuit

Rev. V1

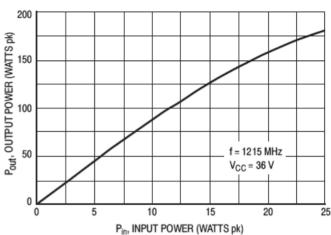


Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Input Power

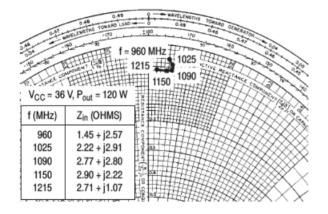
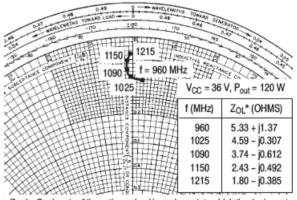



Figure 4. Series Equivalent Input Impedances

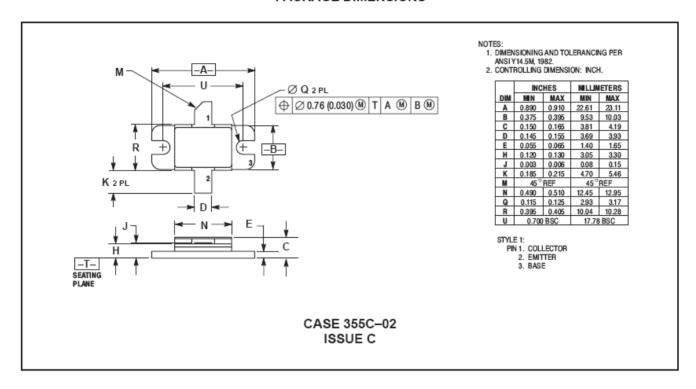

 Z_{OL}^{\star} = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

Figure 5. Series Equivalent Output Impedance

Rev. V1

PACKAGE DIMENSIONS

MRF10120

Microwave Long Pulse Power Silicon NPN Transistor 120W (peak), 960–1215MHz

Rev. V1

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.